148 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			PHP
		
	
	
	
	
	
			
		
		
	
	
			148 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			PHP
		
	
	
	
	
	
| <?php
 | |
| 
 | |
| namespace PhpOffice\PhpSpreadsheet\Shared\JAMA;
 | |
| 
 | |
| use PhpOffice\PhpSpreadsheet\Calculation\Exception as CalculationException;
 | |
| 
 | |
| /**
 | |
|  *    Cholesky decomposition class.
 | |
|  *
 | |
|  *    For a symmetric, positive definite matrix A, the Cholesky decomposition
 | |
|  *    is an lower triangular matrix L so that A = L*L'.
 | |
|  *
 | |
|  *    If the matrix is not symmetric or positive definite, the constructor
 | |
|  *    returns a partial decomposition and sets an internal flag that may
 | |
|  *    be queried by the isSPD() method.
 | |
|  *
 | |
|  *    @author Paul Meagher
 | |
|  *    @author Michael Bommarito
 | |
|  *
 | |
|  *    @version 1.2
 | |
|  */
 | |
| class CholeskyDecomposition
 | |
| {
 | |
|     /**
 | |
|      * Decomposition storage.
 | |
|      *
 | |
|      * @var array
 | |
|      */
 | |
|     private $L = [];
 | |
| 
 | |
|     /**
 | |
|      * Matrix row and column dimension.
 | |
|      *
 | |
|      * @var int
 | |
|      */
 | |
|     private $m;
 | |
| 
 | |
|     /**
 | |
|      * Symmetric positive definite flag.
 | |
|      *
 | |
|      * @var bool
 | |
|      */
 | |
|     private $isspd = true;
 | |
| 
 | |
|     /**
 | |
|      * CholeskyDecomposition.
 | |
|      *
 | |
|      *    Class constructor - decomposes symmetric positive definite matrix
 | |
|      *
 | |
|      * @param Matrix $A Matrix square symmetric positive definite matrix
 | |
|      */
 | |
|     public function __construct(Matrix $A)
 | |
|     {
 | |
|         $this->L = $A->getArray();
 | |
|         $this->m = $A->getRowDimension();
 | |
| 
 | |
|         for ($i = 0; $i < $this->m; ++$i) {
 | |
|             for ($j = $i; $j < $this->m; ++$j) {
 | |
|                 for ($sum = $this->L[$i][$j], $k = $i - 1; $k >= 0; --$k) {
 | |
|                     $sum -= $this->L[$i][$k] * $this->L[$j][$k];
 | |
|                 }
 | |
|                 if ($i == $j) {
 | |
|                     if ($sum >= 0) {
 | |
|                         $this->L[$i][$i] = sqrt($sum);
 | |
|                     } else {
 | |
|                         $this->isspd = false;
 | |
|                     }
 | |
|                 } else {
 | |
|                     if ($this->L[$i][$i] != 0) {
 | |
|                         $this->L[$j][$i] = $sum / $this->L[$i][$i];
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             for ($k = $i + 1; $k < $this->m; ++$k) {
 | |
|                 $this->L[$i][$k] = 0.0;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      *    Is the matrix symmetric and positive definite?
 | |
|      *
 | |
|      * @return bool
 | |
|      */
 | |
|     public function isSPD()
 | |
|     {
 | |
|         return $this->isspd;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * getL.
 | |
|      *
 | |
|      * Return triangular factor.
 | |
|      *
 | |
|      * @return Matrix Lower triangular matrix
 | |
|      */
 | |
|     public function getL()
 | |
|     {
 | |
|         return new Matrix($this->L);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Solve A*X = B.
 | |
|      *
 | |
|      * @param $B Row-equal matrix
 | |
|      *
 | |
|      * @return Matrix L * L' * X = B
 | |
|      */
 | |
|     public function solve(Matrix $B)
 | |
|     {
 | |
|         if ($B->getRowDimension() == $this->m) {
 | |
|             if ($this->isspd) {
 | |
|                 $X = $B->getArrayCopy();
 | |
|                 $nx = $B->getColumnDimension();
 | |
| 
 | |
|                 for ($k = 0; $k < $this->m; ++$k) {
 | |
|                     for ($i = $k + 1; $i < $this->m; ++$i) {
 | |
|                         for ($j = 0; $j < $nx; ++$j) {
 | |
|                             $X[$i][$j] -= $X[$k][$j] * $this->L[$i][$k];
 | |
|                         }
 | |
|                     }
 | |
|                     for ($j = 0; $j < $nx; ++$j) {
 | |
|                         $X[$k][$j] /= $this->L[$k][$k];
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 for ($k = $this->m - 1; $k >= 0; --$k) {
 | |
|                     for ($j = 0; $j < $nx; ++$j) {
 | |
|                         $X[$k][$j] /= $this->L[$k][$k];
 | |
|                     }
 | |
|                     for ($i = 0; $i < $k; ++$i) {
 | |
|                         for ($j = 0; $j < $nx; ++$j) {
 | |
|                             $X[$i][$j] -= $X[$k][$j] * $this->L[$k][$i];
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 return new Matrix($X, $this->m, $nx);
 | |
|             }
 | |
| 
 | |
|             throw new CalculationException(Matrix::MATRIX_SPD_EXCEPTION);
 | |
|         }
 | |
| 
 | |
|         throw new CalculationException(Matrix::MATRIX_DIMENSION_EXCEPTION);
 | |
|     }
 | |
| }
 |