91 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			PHP
		
	
	
	
	
	
			
		
		
	
	
			91 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			PHP
		
	
	
	
	
	
| <?php
 | |
| 
 | |
| namespace PhpOffice\PhpSpreadsheet\Shared\Trend;
 | |
| 
 | |
| class LogarithmicBestFit extends BestFit
 | |
| {
 | |
|     /**
 | |
|      * Algorithm type to use for best-fit
 | |
|      * (Name of this Trend class).
 | |
|      *
 | |
|      * @var string
 | |
|      */
 | |
|     protected $bestFitType = 'logarithmic';
 | |
| 
 | |
|     /**
 | |
|      * Return the Y-Value for a specified value of X.
 | |
|      *
 | |
|      * @param float $xValue X-Value
 | |
|      *
 | |
|      * @return float Y-Value
 | |
|      */
 | |
|     public function getValueOfYForX($xValue)
 | |
|     {
 | |
|         return $this->getIntersect() + $this->getSlope() * log($xValue - $this->xOffset);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Return the X-Value for a specified value of Y.
 | |
|      *
 | |
|      * @param float $yValue Y-Value
 | |
|      *
 | |
|      * @return float X-Value
 | |
|      */
 | |
|     public function getValueOfXForY($yValue)
 | |
|     {
 | |
|         return exp(($yValue - $this->getIntersect()) / $this->getSlope());
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Return the Equation of the best-fit line.
 | |
|      *
 | |
|      * @param int $dp Number of places of decimal precision to display
 | |
|      *
 | |
|      * @return string
 | |
|      */
 | |
|     public function getEquation($dp = 0)
 | |
|     {
 | |
|         $slope = $this->getSlope($dp);
 | |
|         $intersect = $this->getIntersect($dp);
 | |
| 
 | |
|         return 'Y = ' . $intersect . ' + ' . $slope . ' * log(X)';
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Execute the regression and calculate the goodness of fit for a set of X and Y data values.
 | |
|      *
 | |
|      * @param float[] $yValues The set of Y-values for this regression
 | |
|      * @param float[] $xValues The set of X-values for this regression
 | |
|      * @param bool $const
 | |
|      */
 | |
|     private function logarithmicRegression($yValues, $xValues, $const): void
 | |
|     {
 | |
|         foreach ($xValues as &$value) {
 | |
|             if ($value < 0.0) {
 | |
|                 $value = 0 - log(abs($value));
 | |
|             } elseif ($value > 0.0) {
 | |
|                 $value = log($value);
 | |
|             }
 | |
|         }
 | |
|         unset($value);
 | |
| 
 | |
|         $this->leastSquareFit($yValues, $xValues, $const);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Define the regression and calculate the goodness of fit for a set of X and Y data values.
 | |
|      *
 | |
|      * @param float[] $yValues The set of Y-values for this regression
 | |
|      * @param float[] $xValues The set of X-values for this regression
 | |
|      * @param bool $const
 | |
|      */
 | |
|     public function __construct($yValues, $xValues = [], $const = true)
 | |
|     {
 | |
|         parent::__construct($yValues, $xValues);
 | |
| 
 | |
|         if (!$this->error) {
 | |
|             $this->logarithmicRegression($yValues, $xValues, $const);
 | |
|         }
 | |
|     }
 | |
| }
 |