529 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			PHP
		
	
	
	
	
	
			
		
		
	
	
			529 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			PHP
		
	
	
	
	
	
| <?php
 | |
| 
 | |
| namespace PhpOffice\PhpSpreadsheet\Shared\JAMA;
 | |
| 
 | |
| /**
 | |
|  *    For an m-by-n matrix A with m >= n, the singular value decomposition is
 | |
|  *    an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and
 | |
|  *    an n-by-n orthogonal matrix V so that A = U*S*V'.
 | |
|  *
 | |
|  *    The singular values, sigma[$k] = S[$k][$k], are ordered so that
 | |
|  *    sigma[0] >= sigma[1] >= ... >= sigma[n-1].
 | |
|  *
 | |
|  *    The singular value decompostion always exists, so the constructor will
 | |
|  *    never fail.  The matrix condition number and the effective numerical
 | |
|  *    rank can be computed from this decomposition.
 | |
|  *
 | |
|  *    @author  Paul Meagher
 | |
|  *
 | |
|  *    @version 1.1
 | |
|  */
 | |
| class SingularValueDecomposition
 | |
| {
 | |
|     /**
 | |
|      * Internal storage of U.
 | |
|      *
 | |
|      * @var array
 | |
|      */
 | |
|     private $U = [];
 | |
| 
 | |
|     /**
 | |
|      * Internal storage of V.
 | |
|      *
 | |
|      * @var array
 | |
|      */
 | |
|     private $V = [];
 | |
| 
 | |
|     /**
 | |
|      * Internal storage of singular values.
 | |
|      *
 | |
|      * @var array
 | |
|      */
 | |
|     private $s = [];
 | |
| 
 | |
|     /**
 | |
|      * Row dimension.
 | |
|      *
 | |
|      * @var int
 | |
|      */
 | |
|     private $m;
 | |
| 
 | |
|     /**
 | |
|      * Column dimension.
 | |
|      *
 | |
|      * @var int
 | |
|      */
 | |
|     private $n;
 | |
| 
 | |
|     /**
 | |
|      * Construct the singular value decomposition.
 | |
|      *
 | |
|      * Derived from LINPACK code.
 | |
|      *
 | |
|      * @param mixed $Arg Rectangular matrix
 | |
|      */
 | |
|     public function __construct($Arg)
 | |
|     {
 | |
|         // Initialize.
 | |
|         $A = $Arg->getArrayCopy();
 | |
|         $this->m = $Arg->getRowDimension();
 | |
|         $this->n = $Arg->getColumnDimension();
 | |
|         $nu = min($this->m, $this->n);
 | |
|         $e = [];
 | |
|         $work = [];
 | |
|         $wantu = true;
 | |
|         $wantv = true;
 | |
|         $nct = min($this->m - 1, $this->n);
 | |
|         $nrt = max(0, min($this->n - 2, $this->m));
 | |
| 
 | |
|         // Reduce A to bidiagonal form, storing the diagonal elements
 | |
|         // in s and the super-diagonal elements in e.
 | |
|         $kMax = max($nct, $nrt);
 | |
|         for ($k = 0; $k < $kMax; ++$k) {
 | |
|             if ($k < $nct) {
 | |
|                 // Compute the transformation for the k-th column and
 | |
|                 // place the k-th diagonal in s[$k].
 | |
|                 // Compute 2-norm of k-th column without under/overflow.
 | |
|                 $this->s[$k] = 0;
 | |
|                 for ($i = $k; $i < $this->m; ++$i) {
 | |
|                     $this->s[$k] = hypo($this->s[$k], $A[$i][$k]);
 | |
|                 }
 | |
|                 if ($this->s[$k] != 0.0) {
 | |
|                     if ($A[$k][$k] < 0.0) {
 | |
|                         $this->s[$k] = -$this->s[$k];
 | |
|                     }
 | |
|                     for ($i = $k; $i < $this->m; ++$i) {
 | |
|                         $A[$i][$k] /= $this->s[$k];
 | |
|                     }
 | |
|                     $A[$k][$k] += 1.0;
 | |
|                 }
 | |
|                 $this->s[$k] = -$this->s[$k];
 | |
|             }
 | |
| 
 | |
|             for ($j = $k + 1; $j < $this->n; ++$j) {
 | |
|                 if (($k < $nct) & ($this->s[$k] != 0.0)) {
 | |
|                     // Apply the transformation.
 | |
|                     $t = 0;
 | |
|                     for ($i = $k; $i < $this->m; ++$i) {
 | |
|                         $t += $A[$i][$k] * $A[$i][$j];
 | |
|                     }
 | |
|                     $t = -$t / $A[$k][$k];
 | |
|                     for ($i = $k; $i < $this->m; ++$i) {
 | |
|                         $A[$i][$j] += $t * $A[$i][$k];
 | |
|                     }
 | |
|                     // Place the k-th row of A into e for the
 | |
|                     // subsequent calculation of the row transformation.
 | |
|                     $e[$j] = $A[$k][$j];
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if ($wantu && ($k < $nct)) {
 | |
|                 // Place the transformation in U for subsequent back
 | |
|                 // multiplication.
 | |
|                 for ($i = $k; $i < $this->m; ++$i) {
 | |
|                     $this->U[$i][$k] = $A[$i][$k];
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if ($k < $nrt) {
 | |
|                 // Compute the k-th row transformation and place the
 | |
|                 // k-th super-diagonal in e[$k].
 | |
|                 // Compute 2-norm without under/overflow.
 | |
|                 $e[$k] = 0;
 | |
|                 for ($i = $k + 1; $i < $this->n; ++$i) {
 | |
|                     $e[$k] = hypo($e[$k], $e[$i]);
 | |
|                 }
 | |
|                 if ($e[$k] != 0.0) {
 | |
|                     if ($e[$k + 1] < 0.0) {
 | |
|                         $e[$k] = -$e[$k];
 | |
|                     }
 | |
|                     for ($i = $k + 1; $i < $this->n; ++$i) {
 | |
|                         $e[$i] /= $e[$k];
 | |
|                     }
 | |
|                     $e[$k + 1] += 1.0;
 | |
|                 }
 | |
|                 $e[$k] = -$e[$k];
 | |
|                 if (($k + 1 < $this->m) && ($e[$k] != 0.0)) {
 | |
|                     // Apply the transformation.
 | |
|                     for ($i = $k + 1; $i < $this->m; ++$i) {
 | |
|                         $work[$i] = 0.0;
 | |
|                     }
 | |
|                     for ($j = $k + 1; $j < $this->n; ++$j) {
 | |
|                         for ($i = $k + 1; $i < $this->m; ++$i) {
 | |
|                             $work[$i] += $e[$j] * $A[$i][$j];
 | |
|                         }
 | |
|                     }
 | |
|                     for ($j = $k + 1; $j < $this->n; ++$j) {
 | |
|                         $t = -$e[$j] / $e[$k + 1];
 | |
|                         for ($i = $k + 1; $i < $this->m; ++$i) {
 | |
|                             $A[$i][$j] += $t * $work[$i];
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|                 if ($wantv) {
 | |
|                     // Place the transformation in V for subsequent
 | |
|                     // back multiplication.
 | |
|                     for ($i = $k + 1; $i < $this->n; ++$i) {
 | |
|                         $this->V[$i][$k] = $e[$i];
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Set up the final bidiagonal matrix or order p.
 | |
|         $p = min($this->n, $this->m + 1);
 | |
|         if ($nct < $this->n) {
 | |
|             $this->s[$nct] = $A[$nct][$nct];
 | |
|         }
 | |
|         if ($this->m < $p) {
 | |
|             $this->s[$p - 1] = 0.0;
 | |
|         }
 | |
|         if ($nrt + 1 < $p) {
 | |
|             $e[$nrt] = $A[$nrt][$p - 1];
 | |
|         }
 | |
|         $e[$p - 1] = 0.0;
 | |
|         // If required, generate U.
 | |
|         if ($wantu) {
 | |
|             for ($j = $nct; $j < $nu; ++$j) {
 | |
|                 for ($i = 0; $i < $this->m; ++$i) {
 | |
|                     $this->U[$i][$j] = 0.0;
 | |
|                 }
 | |
|                 $this->U[$j][$j] = 1.0;
 | |
|             }
 | |
|             for ($k = $nct - 1; $k >= 0; --$k) {
 | |
|                 if ($this->s[$k] != 0.0) {
 | |
|                     for ($j = $k + 1; $j < $nu; ++$j) {
 | |
|                         $t = 0;
 | |
|                         for ($i = $k; $i < $this->m; ++$i) {
 | |
|                             $t += $this->U[$i][$k] * $this->U[$i][$j];
 | |
|                         }
 | |
|                         $t = -$t / $this->U[$k][$k];
 | |
|                         for ($i = $k; $i < $this->m; ++$i) {
 | |
|                             $this->U[$i][$j] += $t * $this->U[$i][$k];
 | |
|                         }
 | |
|                     }
 | |
|                     for ($i = $k; $i < $this->m; ++$i) {
 | |
|                         $this->U[$i][$k] = -$this->U[$i][$k];
 | |
|                     }
 | |
|                     $this->U[$k][$k] = 1.0 + $this->U[$k][$k];
 | |
|                     for ($i = 0; $i < $k - 1; ++$i) {
 | |
|                         $this->U[$i][$k] = 0.0;
 | |
|                     }
 | |
|                 } else {
 | |
|                     for ($i = 0; $i < $this->m; ++$i) {
 | |
|                         $this->U[$i][$k] = 0.0;
 | |
|                     }
 | |
|                     $this->U[$k][$k] = 1.0;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // If required, generate V.
 | |
|         if ($wantv) {
 | |
|             for ($k = $this->n - 1; $k >= 0; --$k) {
 | |
|                 if (($k < $nrt) && ($e[$k] != 0.0)) {
 | |
|                     for ($j = $k + 1; $j < $nu; ++$j) {
 | |
|                         $t = 0;
 | |
|                         for ($i = $k + 1; $i < $this->n; ++$i) {
 | |
|                             $t += $this->V[$i][$k] * $this->V[$i][$j];
 | |
|                         }
 | |
|                         $t = -$t / $this->V[$k + 1][$k];
 | |
|                         for ($i = $k + 1; $i < $this->n; ++$i) {
 | |
|                             $this->V[$i][$j] += $t * $this->V[$i][$k];
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|                 for ($i = 0; $i < $this->n; ++$i) {
 | |
|                     $this->V[$i][$k] = 0.0;
 | |
|                 }
 | |
|                 $this->V[$k][$k] = 1.0;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Main iteration loop for the singular values.
 | |
|         $pp = $p - 1;
 | |
|         $iter = 0;
 | |
|         $eps = 2.0 ** (-52.0);
 | |
| 
 | |
|         while ($p > 0) {
 | |
|             // Here is where a test for too many iterations would go.
 | |
|             // This section of the program inspects for negligible
 | |
|             // elements in the s and e arrays.  On completion the
 | |
|             // variables kase and k are set as follows:
 | |
|             // kase = 1  if s(p) and e[k-1] are negligible and k<p
 | |
|             // kase = 2  if s(k) is negligible and k<p
 | |
|             // kase = 3  if e[k-1] is negligible, k<p, and
 | |
|             //           s(k), ..., s(p) are not negligible (qr step).
 | |
|             // kase = 4  if e(p-1) is negligible (convergence).
 | |
|             for ($k = $p - 2; $k >= -1; --$k) {
 | |
|                 if ($k == -1) {
 | |
|                     break;
 | |
|                 }
 | |
|                 if (abs($e[$k]) <= $eps * (abs($this->s[$k]) + abs($this->s[$k + 1]))) {
 | |
|                     $e[$k] = 0.0;
 | |
| 
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             if ($k == $p - 2) {
 | |
|                 $kase = 4;
 | |
|             } else {
 | |
|                 for ($ks = $p - 1; $ks >= $k; --$ks) {
 | |
|                     if ($ks == $k) {
 | |
|                         break;
 | |
|                     }
 | |
|                     $t = ($ks != $p ? abs($e[$ks]) : 0.) + ($ks != $k + 1 ? abs($e[$ks - 1]) : 0.);
 | |
|                     if (abs($this->s[$ks]) <= $eps * $t) {
 | |
|                         $this->s[$ks] = 0.0;
 | |
| 
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|                 if ($ks == $k) {
 | |
|                     $kase = 3;
 | |
|                 } elseif ($ks == $p - 1) {
 | |
|                     $kase = 1;
 | |
|                 } else {
 | |
|                     $kase = 2;
 | |
|                     $k = $ks;
 | |
|                 }
 | |
|             }
 | |
|             ++$k;
 | |
| 
 | |
|             // Perform the task indicated by kase.
 | |
|             switch ($kase) {
 | |
|                 // Deflate negligible s(p).
 | |
|                 case 1:
 | |
|                     $f = $e[$p - 2];
 | |
|                     $e[$p - 2] = 0.0;
 | |
|                     for ($j = $p - 2; $j >= $k; --$j) {
 | |
|                         $t = hypo($this->s[$j], $f);
 | |
|                         $cs = $this->s[$j] / $t;
 | |
|                         $sn = $f / $t;
 | |
|                         $this->s[$j] = $t;
 | |
|                         if ($j != $k) {
 | |
|                             $f = -$sn * $e[$j - 1];
 | |
|                             $e[$j - 1] = $cs * $e[$j - 1];
 | |
|                         }
 | |
|                         if ($wantv) {
 | |
|                             for ($i = 0; $i < $this->n; ++$i) {
 | |
|                                 $t = $cs * $this->V[$i][$j] + $sn * $this->V[$i][$p - 1];
 | |
|                                 $this->V[$i][$p - 1] = -$sn * $this->V[$i][$j] + $cs * $this->V[$i][$p - 1];
 | |
|                                 $this->V[$i][$j] = $t;
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
| 
 | |
|                     break;
 | |
|                 // Split at negligible s(k).
 | |
|                 case 2:
 | |
|                     $f = $e[$k - 1];
 | |
|                     $e[$k - 1] = 0.0;
 | |
|                     for ($j = $k; $j < $p; ++$j) {
 | |
|                         $t = hypo($this->s[$j], $f);
 | |
|                         $cs = $this->s[$j] / $t;
 | |
|                         $sn = $f / $t;
 | |
|                         $this->s[$j] = $t;
 | |
|                         $f = -$sn * $e[$j];
 | |
|                         $e[$j] = $cs * $e[$j];
 | |
|                         if ($wantu) {
 | |
|                             for ($i = 0; $i < $this->m; ++$i) {
 | |
|                                 $t = $cs * $this->U[$i][$j] + $sn * $this->U[$i][$k - 1];
 | |
|                                 $this->U[$i][$k - 1] = -$sn * $this->U[$i][$j] + $cs * $this->U[$i][$k - 1];
 | |
|                                 $this->U[$i][$j] = $t;
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
| 
 | |
|                     break;
 | |
|                 // Perform one qr step.
 | |
|                 case 3:
 | |
|                     // Calculate the shift.
 | |
|                     $scale = max(max(max(max(abs($this->s[$p - 1]), abs($this->s[$p - 2])), abs($e[$p - 2])), abs($this->s[$k])), abs($e[$k]));
 | |
|                     $sp = $this->s[$p - 1] / $scale;
 | |
|                     $spm1 = $this->s[$p - 2] / $scale;
 | |
|                     $epm1 = $e[$p - 2] / $scale;
 | |
|                     $sk = $this->s[$k] / $scale;
 | |
|                     $ek = $e[$k] / $scale;
 | |
|                     $b = (($spm1 + $sp) * ($spm1 - $sp) + $epm1 * $epm1) / 2.0;
 | |
|                     $c = ($sp * $epm1) * ($sp * $epm1);
 | |
|                     $shift = 0.0;
 | |
|                     if (($b != 0.0) || ($c != 0.0)) {
 | |
|                         $shift = sqrt($b * $b + $c);
 | |
|                         if ($b < 0.0) {
 | |
|                             $shift = -$shift;
 | |
|                         }
 | |
|                         $shift = $c / ($b + $shift);
 | |
|                     }
 | |
|                     $f = ($sk + $sp) * ($sk - $sp) + $shift;
 | |
|                     $g = $sk * $ek;
 | |
|                     // Chase zeros.
 | |
|                     for ($j = $k; $j < $p - 1; ++$j) {
 | |
|                         $t = hypo($f, $g);
 | |
|                         $cs = $f / $t;
 | |
|                         $sn = $g / $t;
 | |
|                         if ($j != $k) {
 | |
|                             $e[$j - 1] = $t;
 | |
|                         }
 | |
|                         $f = $cs * $this->s[$j] + $sn * $e[$j];
 | |
|                         $e[$j] = $cs * $e[$j] - $sn * $this->s[$j];
 | |
|                         $g = $sn * $this->s[$j + 1];
 | |
|                         $this->s[$j + 1] = $cs * $this->s[$j + 1];
 | |
|                         if ($wantv) {
 | |
|                             for ($i = 0; $i < $this->n; ++$i) {
 | |
|                                 $t = $cs * $this->V[$i][$j] + $sn * $this->V[$i][$j + 1];
 | |
|                                 $this->V[$i][$j + 1] = -$sn * $this->V[$i][$j] + $cs * $this->V[$i][$j + 1];
 | |
|                                 $this->V[$i][$j] = $t;
 | |
|                             }
 | |
|                         }
 | |
|                         $t = hypo($f, $g);
 | |
|                         $cs = $f / $t;
 | |
|                         $sn = $g / $t;
 | |
|                         $this->s[$j] = $t;
 | |
|                         $f = $cs * $e[$j] + $sn * $this->s[$j + 1];
 | |
|                         $this->s[$j + 1] = -$sn * $e[$j] + $cs * $this->s[$j + 1];
 | |
|                         $g = $sn * $e[$j + 1];
 | |
|                         $e[$j + 1] = $cs * $e[$j + 1];
 | |
|                         if ($wantu && ($j < $this->m - 1)) {
 | |
|                             for ($i = 0; $i < $this->m; ++$i) {
 | |
|                                 $t = $cs * $this->U[$i][$j] + $sn * $this->U[$i][$j + 1];
 | |
|                                 $this->U[$i][$j + 1] = -$sn * $this->U[$i][$j] + $cs * $this->U[$i][$j + 1];
 | |
|                                 $this->U[$i][$j] = $t;
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                     $e[$p - 2] = $f;
 | |
|                     $iter = $iter + 1;
 | |
| 
 | |
|                     break;
 | |
|                 // Convergence.
 | |
|                 case 4:
 | |
|                     // Make the singular values positive.
 | |
|                     if ($this->s[$k] <= 0.0) {
 | |
|                         $this->s[$k] = ($this->s[$k] < 0.0 ? -$this->s[$k] : 0.0);
 | |
|                         if ($wantv) {
 | |
|                             for ($i = 0; $i <= $pp; ++$i) {
 | |
|                                 $this->V[$i][$k] = -$this->V[$i][$k];
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                     // Order the singular values.
 | |
|                     while ($k < $pp) {
 | |
|                         if ($this->s[$k] >= $this->s[$k + 1]) {
 | |
|                             break;
 | |
|                         }
 | |
|                         $t = $this->s[$k];
 | |
|                         $this->s[$k] = $this->s[$k + 1];
 | |
|                         $this->s[$k + 1] = $t;
 | |
|                         if ($wantv && ($k < $this->n - 1)) {
 | |
|                             for ($i = 0; $i < $this->n; ++$i) {
 | |
|                                 $t = $this->V[$i][$k + 1];
 | |
|                                 $this->V[$i][$k + 1] = $this->V[$i][$k];
 | |
|                                 $this->V[$i][$k] = $t;
 | |
|                             }
 | |
|                         }
 | |
|                         if ($wantu && ($k < $this->m - 1)) {
 | |
|                             for ($i = 0; $i < $this->m; ++$i) {
 | |
|                                 $t = $this->U[$i][$k + 1];
 | |
|                                 $this->U[$i][$k + 1] = $this->U[$i][$k];
 | |
|                                 $this->U[$i][$k] = $t;
 | |
|                             }
 | |
|                         }
 | |
|                         ++$k;
 | |
|                     }
 | |
|                     $iter = 0;
 | |
|                     --$p;
 | |
| 
 | |
|                     break;
 | |
|             } // end switch
 | |
|         } // end while
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Return the left singular vectors.
 | |
|      *
 | |
|      * @return Matrix U
 | |
|      */
 | |
|     public function getU()
 | |
|     {
 | |
|         return new Matrix($this->U, $this->m, min($this->m + 1, $this->n));
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Return the right singular vectors.
 | |
|      *
 | |
|      * @return Matrix V
 | |
|      */
 | |
|     public function getV()
 | |
|     {
 | |
|         return new Matrix($this->V);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Return the one-dimensional array of singular values.
 | |
|      *
 | |
|      * @return array diagonal of S
 | |
|      */
 | |
|     public function getSingularValues()
 | |
|     {
 | |
|         return $this->s;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Return the diagonal matrix of singular values.
 | |
|      *
 | |
|      * @return Matrix S
 | |
|      */
 | |
|     public function getS()
 | |
|     {
 | |
|         for ($i = 0; $i < $this->n; ++$i) {
 | |
|             for ($j = 0; $j < $this->n; ++$j) {
 | |
|                 $S[$i][$j] = 0.0;
 | |
|             }
 | |
|             $S[$i][$i] = $this->s[$i];
 | |
|         }
 | |
| 
 | |
|         return new Matrix($S);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Two norm.
 | |
|      *
 | |
|      * @return float max(S)
 | |
|      */
 | |
|     public function norm2()
 | |
|     {
 | |
|         return $this->s[0];
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Two norm condition number.
 | |
|      *
 | |
|      * @return float max(S)/min(S)
 | |
|      */
 | |
|     public function cond()
 | |
|     {
 | |
|         return $this->s[0] / $this->s[min($this->m, $this->n) - 1];
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Effective numerical matrix rank.
 | |
|      *
 | |
|      * @return int Number of nonnegligible singular values
 | |
|      */
 | |
|     public function rank()
 | |
|     {
 | |
|         $eps = 2.0 ** (-52.0);
 | |
|         $tol = max($this->m, $this->n) * $this->s[0] * $eps;
 | |
|         $r = 0;
 | |
|         $iMax = count($this->s);
 | |
|         for ($i = 0; $i < $iMax; ++$i) {
 | |
|             if ($this->s[$i] > $tol) {
 | |
|                 ++$r;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return $r;
 | |
|     }
 | |
| }
 |