201 lines
5.5 KiB
PHP
201 lines
5.5 KiB
PHP
<?php
|
|
|
|
namespace PhpOffice\PhpSpreadsheet\Shared\Trend;
|
|
|
|
use PhpOffice\PhpSpreadsheet\Shared\JAMA\Matrix;
|
|
|
|
class PolynomialBestFit extends BestFit
|
|
{
|
|
/**
|
|
* Algorithm type to use for best-fit
|
|
* (Name of this Trend class).
|
|
*
|
|
* @var string
|
|
*/
|
|
protected $bestFitType = 'polynomial';
|
|
|
|
/**
|
|
* Polynomial order.
|
|
*
|
|
* @var int
|
|
*/
|
|
protected $order = 0;
|
|
|
|
/**
|
|
* Return the order of this polynomial.
|
|
*
|
|
* @return int
|
|
*/
|
|
public function getOrder()
|
|
{
|
|
return $this->order;
|
|
}
|
|
|
|
/**
|
|
* Return the Y-Value for a specified value of X.
|
|
*
|
|
* @param float $xValue X-Value
|
|
*
|
|
* @return float Y-Value
|
|
*/
|
|
public function getValueOfYForX($xValue)
|
|
{
|
|
$retVal = $this->getIntersect();
|
|
$slope = $this->getSlope();
|
|
foreach ($slope as $key => $value) {
|
|
if ($value != 0.0) {
|
|
$retVal += $value * $xValue ** ($key + 1);
|
|
}
|
|
}
|
|
|
|
return $retVal;
|
|
}
|
|
|
|
/**
|
|
* Return the X-Value for a specified value of Y.
|
|
*
|
|
* @param float $yValue Y-Value
|
|
*
|
|
* @return float X-Value
|
|
*/
|
|
public function getValueOfXForY($yValue)
|
|
{
|
|
return ($yValue - $this->getIntersect()) / $this->getSlope();
|
|
}
|
|
|
|
/**
|
|
* Return the Equation of the best-fit line.
|
|
*
|
|
* @param int $dp Number of places of decimal precision to display
|
|
*
|
|
* @return string
|
|
*/
|
|
public function getEquation($dp = 0)
|
|
{
|
|
$slope = $this->getSlope($dp);
|
|
$intersect = $this->getIntersect($dp);
|
|
|
|
$equation = 'Y = ' . $intersect;
|
|
foreach ($slope as $key => $value) {
|
|
if ($value != 0.0) {
|
|
$equation .= ' + ' . $value . ' * X';
|
|
if ($key > 0) {
|
|
$equation .= '^' . ($key + 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
return $equation;
|
|
}
|
|
|
|
/**
|
|
* Return the Slope of the line.
|
|
*
|
|
* @param int $dp Number of places of decimal precision to display
|
|
*
|
|
* @return string
|
|
*/
|
|
public function getSlope($dp = 0)
|
|
{
|
|
if ($dp != 0) {
|
|
$coefficients = [];
|
|
foreach ($this->slope as $coefficient) {
|
|
$coefficients[] = round($coefficient, $dp);
|
|
}
|
|
|
|
return $coefficients;
|
|
}
|
|
|
|
return $this->slope;
|
|
}
|
|
|
|
public function getCoefficients($dp = 0)
|
|
{
|
|
return array_merge([$this->getIntersect($dp)], $this->getSlope($dp));
|
|
}
|
|
|
|
/**
|
|
* Execute the regression and calculate the goodness of fit for a set of X and Y data values.
|
|
*
|
|
* @param int $order Order of Polynomial for this regression
|
|
* @param float[] $yValues The set of Y-values for this regression
|
|
* @param float[] $xValues The set of X-values for this regression
|
|
*/
|
|
private function polynomialRegression($order, $yValues, $xValues): void
|
|
{
|
|
// calculate sums
|
|
$x_sum = array_sum($xValues);
|
|
$y_sum = array_sum($yValues);
|
|
$xx_sum = $xy_sum = $yy_sum = 0;
|
|
for ($i = 0; $i < $this->valueCount; ++$i) {
|
|
$xy_sum += $xValues[$i] * $yValues[$i];
|
|
$xx_sum += $xValues[$i] * $xValues[$i];
|
|
$yy_sum += $yValues[$i] * $yValues[$i];
|
|
}
|
|
/*
|
|
* This routine uses logic from the PHP port of polyfit version 0.1
|
|
* written by Michael Bommarito and Paul Meagher
|
|
*
|
|
* The function fits a polynomial function of order $order through
|
|
* a series of x-y data points using least squares.
|
|
*
|
|
*/
|
|
$A = [];
|
|
$B = [];
|
|
for ($i = 0; $i < $this->valueCount; ++$i) {
|
|
for ($j = 0; $j <= $order; ++$j) {
|
|
$A[$i][$j] = $xValues[$i] ** $j;
|
|
}
|
|
}
|
|
for ($i = 0; $i < $this->valueCount; ++$i) {
|
|
$B[$i] = [$yValues[$i]];
|
|
}
|
|
$matrixA = new Matrix($A);
|
|
$matrixB = new Matrix($B);
|
|
$C = $matrixA->solve($matrixB);
|
|
|
|
$coefficients = [];
|
|
for ($i = 0; $i < $C->getRowDimension(); ++$i) {
|
|
$r = $C->get($i, 0);
|
|
if (abs($r) <= 10 ** (-9)) {
|
|
$r = 0;
|
|
}
|
|
$coefficients[] = $r;
|
|
}
|
|
|
|
$this->intersect = array_shift($coefficients);
|
|
$this->slope = $coefficients;
|
|
|
|
$this->calculateGoodnessOfFit($x_sum, $y_sum, $xx_sum, $yy_sum, $xy_sum, 0, 0, 0);
|
|
foreach ($this->xValues as $xKey => $xValue) {
|
|
$this->yBestFitValues[$xKey] = $this->getValueOfYForX($xValue);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Define the regression and calculate the goodness of fit for a set of X and Y data values.
|
|
*
|
|
* @param int $order Order of Polynomial for this regression
|
|
* @param float[] $yValues The set of Y-values for this regression
|
|
* @param float[] $xValues The set of X-values for this regression
|
|
* @param bool $const
|
|
*/
|
|
public function __construct($order, $yValues, $xValues = [], $const = true)
|
|
{
|
|
parent::__construct($yValues, $xValues);
|
|
|
|
if (!$this->error) {
|
|
if ($order < $this->valueCount) {
|
|
$this->bestFitType .= '_' . $order;
|
|
$this->order = $order;
|
|
$this->polynomialRegression($order, $yValues, $xValues);
|
|
if (($this->getGoodnessOfFit() < 0.0) || ($this->getGoodnessOfFit() > 1.0)) {
|
|
$this->error = true;
|
|
}
|
|
} else {
|
|
$this->error = true;
|
|
}
|
|
}
|
|
}
|
|
}
|