melder/vendor/PhpSpreadsheet/Shared/JAMA/Matrix.php
2024-02-16 15:35:01 +01:00

1203 lines
36 KiB
PHP

<?php
namespace PhpOffice\PhpSpreadsheet\Shared\JAMA;
use PhpOffice\PhpSpreadsheet\Calculation\Exception as CalculationException;
use PhpOffice\PhpSpreadsheet\Calculation\Functions;
use PhpOffice\PhpSpreadsheet\Shared\StringHelper;
/**
* Matrix class.
*
* @author Paul Meagher
* @author Michael Bommarito
* @author Lukasz Karapuda
* @author Bartek Matosiuk
*
* @version 1.8
*
* @see https://math.nist.gov/javanumerics/jama/
*/
class Matrix
{
const POLYMORPHIC_ARGUMENT_EXCEPTION = 'Invalid argument pattern for polymorphic function.';
const ARGUMENT_TYPE_EXCEPTION = 'Invalid argument type.';
const ARGUMENT_BOUNDS_EXCEPTION = 'Invalid argument range.';
const MATRIX_DIMENSION_EXCEPTION = 'Matrix dimensions are not equal.';
const ARRAY_LENGTH_EXCEPTION = 'Array length must be a multiple of m.';
const MATRIX_SPD_EXCEPTION = 'Can only perform operation on symmetric positive definite matrix.';
/**
* Matrix storage.
*
* @var array
*/
public $A = [];
/**
* Matrix row dimension.
*
* @var int
*/
private $m;
/**
* Matrix column dimension.
*
* @var int
*/
private $n;
/**
* Polymorphic constructor.
*
* As PHP has no support for polymorphic constructors, we use tricks to make our own sort of polymorphism using func_num_args, func_get_arg, and gettype. In essence, we're just implementing a simple RTTI filter and calling the appropriate constructor.
*/
public function __construct(...$args)
{
if (count($args) > 0) {
$match = implode(',', array_map('gettype', $args));
switch ($match) {
//Rectangular matrix - m x n initialized from 2D array
case 'array':
$this->m = count($args[0]);
$this->n = count($args[0][0]);
$this->A = $args[0];
break;
//Square matrix - n x n
case 'integer':
$this->m = $args[0];
$this->n = $args[0];
$this->A = array_fill(0, $this->m, array_fill(0, $this->n, 0));
break;
//Rectangular matrix - m x n
case 'integer,integer':
$this->m = $args[0];
$this->n = $args[1];
$this->A = array_fill(0, $this->m, array_fill(0, $this->n, 0));
break;
//Rectangular matrix - m x n initialized from packed array
case 'array,integer':
$this->m = $args[1];
if ($this->m != 0) {
$this->n = count($args[0]) / $this->m;
} else {
$this->n = 0;
}
if (($this->m * $this->n) == count($args[0])) {
for ($i = 0; $i < $this->m; ++$i) {
for ($j = 0; $j < $this->n; ++$j) {
$this->A[$i][$j] = $args[0][$i + $j * $this->m];
}
}
} else {
throw new CalculationException(self::ARRAY_LENGTH_EXCEPTION);
}
break;
default:
throw new CalculationException(self::POLYMORPHIC_ARGUMENT_EXCEPTION);
break;
}
} else {
throw new CalculationException(self::POLYMORPHIC_ARGUMENT_EXCEPTION);
}
}
/**
* getArray.
*
* @return array Matrix array
*/
public function getArray()
{
return $this->A;
}
/**
* getRowDimension.
*
* @return int Row dimension
*/
public function getRowDimension()
{
return $this->m;
}
/**
* getColumnDimension.
*
* @return int Column dimension
*/
public function getColumnDimension()
{
return $this->n;
}
/**
* get.
*
* Get the i,j-th element of the matrix.
*
* @param int $i Row position
* @param int $j Column position
*
* @return mixed Element (int/float/double)
*/
public function get($i = null, $j = null)
{
return $this->A[$i][$j];
}
/**
* getMatrix.
*
* Get a submatrix
*
* @return Matrix Submatrix
*/
public function getMatrix(...$args)
{
if (count($args) > 0) {
$match = implode(',', array_map('gettype', $args));
switch ($match) {
//A($i0...; $j0...)
case 'integer,integer':
[$i0, $j0] = $args;
if ($i0 >= 0) {
$m = $this->m - $i0;
} else {
throw new CalculationException(self::ARGUMENT_BOUNDS_EXCEPTION);
}
if ($j0 >= 0) {
$n = $this->n - $j0;
} else {
throw new CalculationException(self::ARGUMENT_BOUNDS_EXCEPTION);
}
$R = new self($m, $n);
for ($i = $i0; $i < $this->m; ++$i) {
for ($j = $j0; $j < $this->n; ++$j) {
$R->set($i, $j, $this->A[$i][$j]);
}
}
return $R;
break;
//A($i0...$iF; $j0...$jF)
case 'integer,integer,integer,integer':
[$i0, $iF, $j0, $jF] = $args;
if (($iF > $i0) && ($this->m >= $iF) && ($i0 >= 0)) {
$m = $iF - $i0;
} else {
throw new CalculationException(self::ARGUMENT_BOUNDS_EXCEPTION);
}
if (($jF > $j0) && ($this->n >= $jF) && ($j0 >= 0)) {
$n = $jF - $j0;
} else {
throw new CalculationException(self::ARGUMENT_BOUNDS_EXCEPTION);
}
$R = new self($m + 1, $n + 1);
for ($i = $i0; $i <= $iF; ++$i) {
for ($j = $j0; $j <= $jF; ++$j) {
$R->set($i - $i0, $j - $j0, $this->A[$i][$j]);
}
}
return $R;
break;
//$R = array of row indices; $C = array of column indices
case 'array,array':
[$RL, $CL] = $args;
if (count($RL) > 0) {
$m = count($RL);
} else {
throw new CalculationException(self::ARGUMENT_BOUNDS_EXCEPTION);
}
if (count($CL) > 0) {
$n = count($CL);
} else {
throw new CalculationException(self::ARGUMENT_BOUNDS_EXCEPTION);
}
$R = new self($m, $n);
for ($i = 0; $i < $m; ++$i) {
for ($j = 0; $j < $n; ++$j) {
$R->set($i, $j, $this->A[$RL[$i]][$CL[$j]]);
}
}
return $R;
break;
//A($i0...$iF); $CL = array of column indices
case 'integer,integer,array':
[$i0, $iF, $CL] = $args;
if (($iF > $i0) && ($this->m >= $iF) && ($i0 >= 0)) {
$m = $iF - $i0;
} else {
throw new CalculationException(self::ARGUMENT_BOUNDS_EXCEPTION);
}
if (count($CL) > 0) {
$n = count($CL);
} else {
throw new CalculationException(self::ARGUMENT_BOUNDS_EXCEPTION);
}
$R = new self($m, $n);
for ($i = $i0; $i < $iF; ++$i) {
for ($j = 0; $j < $n; ++$j) {
$R->set($i - $i0, $j, $this->A[$i][$CL[$j]]);
}
}
return $R;
break;
//$RL = array of row indices
case 'array,integer,integer':
[$RL, $j0, $jF] = $args;
if (count($RL) > 0) {
$m = count($RL);
} else {
throw new CalculationException(self::ARGUMENT_BOUNDS_EXCEPTION);
}
if (($jF >= $j0) && ($this->n >= $jF) && ($j0 >= 0)) {
$n = $jF - $j0;
} else {
throw new CalculationException(self::ARGUMENT_BOUNDS_EXCEPTION);
}
$R = new self($m, $n + 1);
for ($i = 0; $i < $m; ++$i) {
for ($j = $j0; $j <= $jF; ++$j) {
$R->set($i, $j - $j0, $this->A[$RL[$i]][$j]);
}
}
return $R;
break;
default:
throw new CalculationException(self::POLYMORPHIC_ARGUMENT_EXCEPTION);
break;
}
} else {
throw new CalculationException(self::POLYMORPHIC_ARGUMENT_EXCEPTION);
}
}
/**
* checkMatrixDimensions.
*
* Is matrix B the same size?
*
* @param Matrix $B Matrix B
*
* @return bool
*/
public function checkMatrixDimensions($B = null)
{
if ($B instanceof self) {
if (($this->m == $B->getRowDimension()) && ($this->n == $B->getColumnDimension())) {
return true;
}
throw new CalculationException(self::MATRIX_DIMENSION_EXCEPTION);
}
throw new CalculationException(self::ARGUMENT_TYPE_EXCEPTION);
}
// function checkMatrixDimensions()
/**
* set.
*
* Set the i,j-th element of the matrix.
*
* @param int $i Row position
* @param int $j Column position
* @param mixed $c Int/float/double value
*
* @return mixed Element (int/float/double)
*/
public function set($i = null, $j = null, $c = null)
{
// Optimized set version just has this
$this->A[$i][$j] = $c;
}
// function set()
/**
* identity.
*
* Generate an identity matrix.
*
* @param int $m Row dimension
* @param int $n Column dimension
*
* @return Matrix Identity matrix
*/
public function identity($m = null, $n = null)
{
return $this->diagonal($m, $n, 1);
}
/**
* diagonal.
*
* Generate a diagonal matrix
*
* @param int $m Row dimension
* @param int $n Column dimension
* @param mixed $c Diagonal value
*
* @return Matrix Diagonal matrix
*/
public function diagonal($m = null, $n = null, $c = 1)
{
$R = new self($m, $n);
for ($i = 0; $i < $m; ++$i) {
$R->set($i, $i, $c);
}
return $R;
}
/**
* getMatrixByRow.
*
* Get a submatrix by row index/range
*
* @param int $i0 Initial row index
* @param int $iF Final row index
*
* @return Matrix Submatrix
*/
public function getMatrixByRow($i0 = null, $iF = null)
{
if (is_int($i0)) {
if (is_int($iF)) {
return $this->getMatrix($i0, 0, $iF + 1, $this->n);
}
return $this->getMatrix($i0, 0, $i0 + 1, $this->n);
}
throw new CalculationException(self::ARGUMENT_TYPE_EXCEPTION);
}
/**
* getMatrixByCol.
*
* Get a submatrix by column index/range
*
* @param int $j0 Initial column index
* @param int $jF Final column index
*
* @return Matrix Submatrix
*/
public function getMatrixByCol($j0 = null, $jF = null)
{
if (is_int($j0)) {
if (is_int($jF)) {
return $this->getMatrix(0, $j0, $this->m, $jF + 1);
}
return $this->getMatrix(0, $j0, $this->m, $j0 + 1);
}
throw new CalculationException(self::ARGUMENT_TYPE_EXCEPTION);
}
/**
* transpose.
*
* Tranpose matrix
*
* @return Matrix Transposed matrix
*/
public function transpose()
{
$R = new self($this->n, $this->m);
for ($i = 0; $i < $this->m; ++$i) {
for ($j = 0; $j < $this->n; ++$j) {
$R->set($j, $i, $this->A[$i][$j]);
}
}
return $R;
}
// function transpose()
/**
* trace.
*
* Sum of diagonal elements
*
* @return float Sum of diagonal elements
*/
public function trace()
{
$s = 0;
$n = min($this->m, $this->n);
for ($i = 0; $i < $n; ++$i) {
$s += $this->A[$i][$i];
}
return $s;
}
/**
* uminus.
*
* Unary minus matrix -A
*
* @return Matrix Unary minus matrix
*/
public function uminus()
{
}
/**
* plus.
*
* A + B
*
* @return Matrix Sum
*/
public function plus(...$args)
{
if (count($args) > 0) {
$match = implode(',', array_map('gettype', $args));
switch ($match) {
case 'object':
if ($args[0] instanceof self) {
$M = $args[0];
} else {
throw new CalculationException(self::ARGUMENT_TYPE_EXCEPTION);
}
break;
case 'array':
$M = new self($args[0]);
break;
default:
throw new CalculationException(self::POLYMORPHIC_ARGUMENT_EXCEPTION);
break;
}
$this->checkMatrixDimensions($M);
for ($i = 0; $i < $this->m; ++$i) {
for ($j = 0; $j < $this->n; ++$j) {
$M->set($i, $j, $M->get($i, $j) + $this->A[$i][$j]);
}
}
return $M;
}
throw new CalculationException(self::POLYMORPHIC_ARGUMENT_EXCEPTION);
}
/**
* plusEquals.
*
* A = A + B
*
* @return $this
*/
public function plusEquals(...$args)
{
if (count($args) > 0) {
$match = implode(',', array_map('gettype', $args));
switch ($match) {
case 'object':
if ($args[0] instanceof self) {
$M = $args[0];
} else {
throw new CalculationException(self::ARGUMENT_TYPE_EXCEPTION);
}
break;
case 'array':
$M = new self($args[0]);
break;
default:
throw new CalculationException(self::POLYMORPHIC_ARGUMENT_EXCEPTION);
break;
}
$this->checkMatrixDimensions($M);
for ($i = 0; $i < $this->m; ++$i) {
for ($j = 0; $j < $this->n; ++$j) {
$validValues = true;
$value = $M->get($i, $j);
if ((is_string($this->A[$i][$j])) && (strlen($this->A[$i][$j]) > 0) && (!is_numeric($this->A[$i][$j]))) {
$this->A[$i][$j] = trim($this->A[$i][$j], '"');
$validValues &= StringHelper::convertToNumberIfFraction($this->A[$i][$j]);
}
if ((is_string($value)) && (strlen($value) > 0) && (!is_numeric($value))) {
$value = trim($value, '"');
$validValues &= StringHelper::convertToNumberIfFraction($value);
}
if ($validValues) {
$this->A[$i][$j] += $value;
} else {
$this->A[$i][$j] = Functions::NAN();
}
}
}
return $this;
}
throw new CalculationException(self::POLYMORPHIC_ARGUMENT_EXCEPTION);
}
/**
* minus.
*
* A - B
*
* @return Matrix Sum
*/
public function minus(...$args)
{
if (count($args) > 0) {
$match = implode(',', array_map('gettype', $args));
switch ($match) {
case 'object':
if ($args[0] instanceof self) {
$M = $args[0];
} else {
throw new CalculationException(self::ARGUMENT_TYPE_EXCEPTION);
}
break;
case 'array':
$M = new self($args[0]);
break;
default:
throw new CalculationException(self::POLYMORPHIC_ARGUMENT_EXCEPTION);
break;
}
$this->checkMatrixDimensions($M);
for ($i = 0; $i < $this->m; ++$i) {
for ($j = 0; $j < $this->n; ++$j) {
$M->set($i, $j, $M->get($i, $j) - $this->A[$i][$j]);
}
}
return $M;
}
throw new CalculationException(self::POLYMORPHIC_ARGUMENT_EXCEPTION);
}
/**
* minusEquals.
*
* A = A - B
*
* @return $this
*/
public function minusEquals(...$args)
{
if (count($args) > 0) {
$match = implode(',', array_map('gettype', $args));
switch ($match) {
case 'object':
if ($args[0] instanceof self) {
$M = $args[0];
} else {
throw new CalculationException(self::ARGUMENT_TYPE_EXCEPTION);
}
break;
case 'array':
$M = new self($args[0]);
break;
default:
throw new CalculationException(self::POLYMORPHIC_ARGUMENT_EXCEPTION);
break;
}
$this->checkMatrixDimensions($M);
for ($i = 0; $i < $this->m; ++$i) {
for ($j = 0; $j < $this->n; ++$j) {
$validValues = true;
$value = $M->get($i, $j);
if ((is_string($this->A[$i][$j])) && (strlen($this->A[$i][$j]) > 0) && (!is_numeric($this->A[$i][$j]))) {
$this->A[$i][$j] = trim($this->A[$i][$j], '"');
$validValues &= StringHelper::convertToNumberIfFraction($this->A[$i][$j]);
}
if ((is_string($value)) && (strlen($value) > 0) && (!is_numeric($value))) {
$value = trim($value, '"');
$validValues &= StringHelper::convertToNumberIfFraction($value);
}
if ($validValues) {
$this->A[$i][$j] -= $value;
} else {
$this->A[$i][$j] = Functions::NAN();
}
}
}
return $this;
}
throw new CalculationException(self::POLYMORPHIC_ARGUMENT_EXCEPTION);
}
/**
* arrayTimes.
*
* Element-by-element multiplication
* Cij = Aij * Bij
*
* @return Matrix Matrix Cij
*/
public function arrayTimes(...$args)
{
if (count($args) > 0) {
$match = implode(',', array_map('gettype', $args));
switch ($match) {
case 'object':
if ($args[0] instanceof self) {
$M = $args[0];
} else {
throw new CalculationException(self::ARGUMENT_TYPE_EXCEPTION);
}
break;
case 'array':
$M = new self($args[0]);
break;
default:
throw new CalculationException(self::POLYMORPHIC_ARGUMENT_EXCEPTION);
break;
}
$this->checkMatrixDimensions($M);
for ($i = 0; $i < $this->m; ++$i) {
for ($j = 0; $j < $this->n; ++$j) {
$M->set($i, $j, $M->get($i, $j) * $this->A[$i][$j]);
}
}
return $M;
}
throw new CalculationException(self::POLYMORPHIC_ARGUMENT_EXCEPTION);
}
/**
* arrayTimesEquals.
*
* Element-by-element multiplication
* Aij = Aij * Bij
*
* @return $this
*/
public function arrayTimesEquals(...$args)
{
if (count($args) > 0) {
$match = implode(',', array_map('gettype', $args));
switch ($match) {
case 'object':
if ($args[0] instanceof self) {
$M = $args[0];
} else {
throw new CalculationException(self::ARGUMENT_TYPE_EXCEPTION);
}
break;
case 'array':
$M = new self($args[0]);
break;
default:
throw new CalculationException(self::POLYMORPHIC_ARGUMENT_EXCEPTION);
break;
}
$this->checkMatrixDimensions($M);
for ($i = 0; $i < $this->m; ++$i) {
for ($j = 0; $j < $this->n; ++$j) {
$validValues = true;
$value = $M->get($i, $j);
if ((is_string($this->A[$i][$j])) && (strlen($this->A[$i][$j]) > 0) && (!is_numeric($this->A[$i][$j]))) {
$this->A[$i][$j] = trim($this->A[$i][$j], '"');
$validValues &= StringHelper::convertToNumberIfFraction($this->A[$i][$j]);
}
if ((is_string($value)) && (strlen($value) > 0) && (!is_numeric($value))) {
$value = trim($value, '"');
$validValues &= StringHelper::convertToNumberIfFraction($value);
}
if ($validValues) {
$this->A[$i][$j] *= $value;
} else {
$this->A[$i][$j] = Functions::NAN();
}
}
}
return $this;
}
throw new CalculationException(self::POLYMORPHIC_ARGUMENT_EXCEPTION);
}
/**
* arrayRightDivide.
*
* Element-by-element right division
* A / B
*
* @return Matrix Division result
*/
public function arrayRightDivide(...$args)
{
if (count($args) > 0) {
$match = implode(',', array_map('gettype', $args));
switch ($match) {
case 'object':
if ($args[0] instanceof self) {
$M = $args[0];
} else {
throw new CalculationException(self::ARGUMENT_TYPE_EXCEPTION);
}
break;
case 'array':
$M = new self($args[0]);
break;
default:
throw new CalculationException(self::POLYMORPHIC_ARGUMENT_EXCEPTION);
break;
}
$this->checkMatrixDimensions($M);
for ($i = 0; $i < $this->m; ++$i) {
for ($j = 0; $j < $this->n; ++$j) {
$validValues = true;
$value = $M->get($i, $j);
if ((is_string($this->A[$i][$j])) && (strlen($this->A[$i][$j]) > 0) && (!is_numeric($this->A[$i][$j]))) {
$this->A[$i][$j] = trim($this->A[$i][$j], '"');
$validValues &= StringHelper::convertToNumberIfFraction($this->A[$i][$j]);
}
if ((is_string($value)) && (strlen($value) > 0) && (!is_numeric($value))) {
$value = trim($value, '"');
$validValues &= StringHelper::convertToNumberIfFraction($value);
}
if ($validValues) {
if ($value == 0) {
// Trap for Divide by Zero error
$M->set($i, $j, '#DIV/0!');
} else {
$M->set($i, $j, $this->A[$i][$j] / $value);
}
} else {
$M->set($i, $j, Functions::NAN());
}
}
}
return $M;
}
throw new CalculationException(self::POLYMORPHIC_ARGUMENT_EXCEPTION);
}
/**
* arrayRightDivideEquals.
*
* Element-by-element right division
* Aij = Aij / Bij
*
* @return Matrix Matrix Aij
*/
public function arrayRightDivideEquals(...$args)
{
if (count($args) > 0) {
$match = implode(',', array_map('gettype', $args));
switch ($match) {
case 'object':
if ($args[0] instanceof self) {
$M = $args[0];
} else {
throw new CalculationException(self::ARGUMENT_TYPE_EXCEPTION);
}
break;
case 'array':
$M = new self($args[0]);
break;
default:
throw new CalculationException(self::POLYMORPHIC_ARGUMENT_EXCEPTION);
break;
}
$this->checkMatrixDimensions($M);
for ($i = 0; $i < $this->m; ++$i) {
for ($j = 0; $j < $this->n; ++$j) {
$this->A[$i][$j] = $this->A[$i][$j] / $M->get($i, $j);
}
}
return $M;
}
throw new CalculationException(self::POLYMORPHIC_ARGUMENT_EXCEPTION);
}
/**
* arrayLeftDivide.
*
* Element-by-element Left division
* A / B
*
* @return Matrix Division result
*/
public function arrayLeftDivide(...$args)
{
if (count($args) > 0) {
$match = implode(',', array_map('gettype', $args));
switch ($match) {
case 'object':
if ($args[0] instanceof self) {
$M = $args[0];
} else {
throw new CalculationException(self::ARGUMENT_TYPE_EXCEPTION);
}
break;
case 'array':
$M = new self($args[0]);
break;
default:
throw new CalculationException(self::POLYMORPHIC_ARGUMENT_EXCEPTION);
break;
}
$this->checkMatrixDimensions($M);
for ($i = 0; $i < $this->m; ++$i) {
for ($j = 0; $j < $this->n; ++$j) {
$M->set($i, $j, $M->get($i, $j) / $this->A[$i][$j]);
}
}
return $M;
}
throw new CalculationException(self::POLYMORPHIC_ARGUMENT_EXCEPTION);
}
/**
* arrayLeftDivideEquals.
*
* Element-by-element Left division
* Aij = Aij / Bij
*
* @return Matrix Matrix Aij
*/
public function arrayLeftDivideEquals(...$args)
{
if (count($args) > 0) {
$match = implode(',', array_map('gettype', $args));
switch ($match) {
case 'object':
if ($args[0] instanceof self) {
$M = $args[0];
} else {
throw new CalculationException(self::ARGUMENT_TYPE_EXCEPTION);
}
break;
case 'array':
$M = new self($args[0]);
break;
default:
throw new CalculationException(self::POLYMORPHIC_ARGUMENT_EXCEPTION);
break;
}
$this->checkMatrixDimensions($M);
for ($i = 0; $i < $this->m; ++$i) {
for ($j = 0; $j < $this->n; ++$j) {
$this->A[$i][$j] = $M->get($i, $j) / $this->A[$i][$j];
}
}
return $M;
}
throw new CalculationException(self::POLYMORPHIC_ARGUMENT_EXCEPTION);
}
/**
* times.
*
* Matrix multiplication
*
* @return Matrix Product
*/
public function times(...$args)
{
if (count($args) > 0) {
$match = implode(',', array_map('gettype', $args));
switch ($match) {
case 'object':
if ($args[0] instanceof self) {
$B = $args[0];
} else {
throw new CalculationException(self::ARGUMENT_TYPE_EXCEPTION);
}
if ($this->n == $B->m) {
$C = new self($this->m, $B->n);
for ($j = 0; $j < $B->n; ++$j) {
$Bcolj = [];
for ($k = 0; $k < $this->n; ++$k) {
$Bcolj[$k] = $B->A[$k][$j];
}
for ($i = 0; $i < $this->m; ++$i) {
$Arowi = $this->A[$i];
$s = 0;
for ($k = 0; $k < $this->n; ++$k) {
$s += $Arowi[$k] * $Bcolj[$k];
}
$C->A[$i][$j] = $s;
}
}
return $C;
}
throw new CalculationException(self::MATRIX_DIMENSION_EXCEPTION);
case 'array':
$B = new self($args[0]);
if ($this->n == $B->m) {
$C = new self($this->m, $B->n);
for ($i = 0; $i < $C->m; ++$i) {
for ($j = 0; $j < $C->n; ++$j) {
$s = '0';
for ($k = 0; $k < $C->n; ++$k) {
$s += $this->A[$i][$k] * $B->A[$k][$j];
}
$C->A[$i][$j] = $s;
}
}
return $C;
}
throw new CalculationException(self::MATRIX_DIMENSION_EXCEPTION);
case 'integer':
$C = new self($this->A);
for ($i = 0; $i < $C->m; ++$i) {
for ($j = 0; $j < $C->n; ++$j) {
$C->A[$i][$j] *= $args[0];
}
}
return $C;
case 'double':
$C = new self($this->m, $this->n);
for ($i = 0; $i < $C->m; ++$i) {
for ($j = 0; $j < $C->n; ++$j) {
$C->A[$i][$j] = $args[0] * $this->A[$i][$j];
}
}
return $C;
case 'float':
$C = new self($this->A);
for ($i = 0; $i < $C->m; ++$i) {
for ($j = 0; $j < $C->n; ++$j) {
$C->A[$i][$j] *= $args[0];
}
}
return $C;
default:
throw new CalculationException(self::POLYMORPHIC_ARGUMENT_EXCEPTION);
}
} else {
throw new CalculationException(self::POLYMORPHIC_ARGUMENT_EXCEPTION);
}
}
/**
* power.
*
* A = A ^ B
*
* @return $this
*/
public function power(...$args)
{
if (count($args) > 0) {
$match = implode(',', array_map('gettype', $args));
switch ($match) {
case 'object':
if ($args[0] instanceof self) {
$M = $args[0];
} else {
throw new CalculationException(self::ARGUMENT_TYPE_EXCEPTION);
}
break;
case 'array':
$M = new self($args[0]);
break;
default:
throw new CalculationException(self::POLYMORPHIC_ARGUMENT_EXCEPTION);
break;
}
$this->checkMatrixDimensions($M);
for ($i = 0; $i < $this->m; ++$i) {
for ($j = 0; $j < $this->n; ++$j) {
$validValues = true;
$value = $M->get($i, $j);
if ((is_string($this->A[$i][$j])) && (strlen($this->A[$i][$j]) > 0) && (!is_numeric($this->A[$i][$j]))) {
$this->A[$i][$j] = trim($this->A[$i][$j], '"');
$validValues &= StringHelper::convertToNumberIfFraction($this->A[$i][$j]);
}
if ((is_string($value)) && (strlen($value) > 0) && (!is_numeric($value))) {
$value = trim($value, '"');
$validValues &= StringHelper::convertToNumberIfFraction($value);
}
if ($validValues) {
$this->A[$i][$j] = $this->A[$i][$j] ** $value;
} else {
$this->A[$i][$j] = Functions::NAN();
}
}
}
return $this;
}
throw new CalculationException(self::POLYMORPHIC_ARGUMENT_EXCEPTION);
}
/**
* concat.
*
* A = A & B
*
* @return $this
*/
public function concat(...$args)
{
if (count($args) > 0) {
$match = implode(',', array_map('gettype', $args));
switch ($match) {
case 'object':
if ($args[0] instanceof self) {
$M = $args[0];
} else {
throw new CalculationException(self::ARGUMENT_TYPE_EXCEPTION);
}
break;
case 'array':
$M = new self($args[0]);
break;
default:
throw new CalculationException(self::POLYMORPHIC_ARGUMENT_EXCEPTION);
break;
}
$this->checkMatrixDimensions($M);
for ($i = 0; $i < $this->m; ++$i) {
for ($j = 0; $j < $this->n; ++$j) {
$this->A[$i][$j] = trim($this->A[$i][$j], '"') . trim($M->get($i, $j), '"');
}
}
return $this;
}
throw new CalculationException(self::POLYMORPHIC_ARGUMENT_EXCEPTION);
}
/**
* Solve A*X = B.
*
* @param Matrix $B Right hand side
*
* @return Matrix ... Solution if A is square, least squares solution otherwise
*/
public function solve($B)
{
if ($this->m == $this->n) {
$LU = new LUDecomposition($this);
return $LU->solve($B);
}
$QR = new QRDecomposition($this);
return $QR->solve($B);
}
/**
* Matrix inverse or pseudoinverse.
*
* @return Matrix ... Inverse(A) if A is square, pseudoinverse otherwise.
*/
public function inverse()
{
return $this->solve($this->identity($this->m, $this->m));
}
/**
* det.
*
* Calculate determinant
*
* @return float Determinant
*/
public function det()
{
$L = new LUDecomposition($this);
return $L->det();
}
}