283 lines
7.5 KiB
PHP
283 lines
7.5 KiB
PHP
<?php
|
|
|
|
namespace PhpOffice\PhpSpreadsheet\Shared\JAMA;
|
|
|
|
use PhpOffice\PhpSpreadsheet\Calculation\Exception as CalculationException;
|
|
|
|
/**
|
|
* For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n
|
|
* unit lower triangular matrix L, an n-by-n upper triangular matrix U,
|
|
* and a permutation vector piv of length m so that A(piv,:) = L*U.
|
|
* If m < n, then L is m-by-m and U is m-by-n.
|
|
*
|
|
* The LU decompostion with pivoting always exists, even if the matrix is
|
|
* singular, so the constructor will never fail. The primary use of the
|
|
* LU decomposition is in the solution of square systems of simultaneous
|
|
* linear equations. This will fail if isNonsingular() returns false.
|
|
*
|
|
* @author Paul Meagher
|
|
* @author Bartosz Matosiuk
|
|
* @author Michael Bommarito
|
|
*
|
|
* @version 1.1
|
|
*/
|
|
class LUDecomposition
|
|
{
|
|
const MATRIX_SINGULAR_EXCEPTION = 'Can only perform operation on singular matrix.';
|
|
const MATRIX_SQUARE_EXCEPTION = 'Mismatched Row dimension';
|
|
|
|
/**
|
|
* Decomposition storage.
|
|
*
|
|
* @var array
|
|
*/
|
|
private $LU = [];
|
|
|
|
/**
|
|
* Row dimension.
|
|
*
|
|
* @var int
|
|
*/
|
|
private $m;
|
|
|
|
/**
|
|
* Column dimension.
|
|
*
|
|
* @var int
|
|
*/
|
|
private $n;
|
|
|
|
/**
|
|
* Pivot sign.
|
|
*
|
|
* @var int
|
|
*/
|
|
private $pivsign;
|
|
|
|
/**
|
|
* Internal storage of pivot vector.
|
|
*
|
|
* @var array
|
|
*/
|
|
private $piv = [];
|
|
|
|
/**
|
|
* LU Decomposition constructor.
|
|
*
|
|
* @param Matrix $A Rectangular matrix
|
|
*/
|
|
public function __construct($A)
|
|
{
|
|
if ($A instanceof Matrix) {
|
|
// Use a "left-looking", dot-product, Crout/Doolittle algorithm.
|
|
$this->LU = $A->getArray();
|
|
$this->m = $A->getRowDimension();
|
|
$this->n = $A->getColumnDimension();
|
|
for ($i = 0; $i < $this->m; ++$i) {
|
|
$this->piv[$i] = $i;
|
|
}
|
|
$this->pivsign = 1;
|
|
$LUrowi = $LUcolj = [];
|
|
|
|
// Outer loop.
|
|
for ($j = 0; $j < $this->n; ++$j) {
|
|
// Make a copy of the j-th column to localize references.
|
|
for ($i = 0; $i < $this->m; ++$i) {
|
|
$LUcolj[$i] = &$this->LU[$i][$j];
|
|
}
|
|
// Apply previous transformations.
|
|
for ($i = 0; $i < $this->m; ++$i) {
|
|
$LUrowi = $this->LU[$i];
|
|
// Most of the time is spent in the following dot product.
|
|
$kmax = min($i, $j);
|
|
$s = 0.0;
|
|
for ($k = 0; $k < $kmax; ++$k) {
|
|
$s += $LUrowi[$k] * $LUcolj[$k];
|
|
}
|
|
$LUrowi[$j] = $LUcolj[$i] -= $s;
|
|
}
|
|
// Find pivot and exchange if necessary.
|
|
$p = $j;
|
|
for ($i = $j + 1; $i < $this->m; ++$i) {
|
|
if (abs($LUcolj[$i]) > abs($LUcolj[$p])) {
|
|
$p = $i;
|
|
}
|
|
}
|
|
if ($p != $j) {
|
|
for ($k = 0; $k < $this->n; ++$k) {
|
|
$t = $this->LU[$p][$k];
|
|
$this->LU[$p][$k] = $this->LU[$j][$k];
|
|
$this->LU[$j][$k] = $t;
|
|
}
|
|
$k = $this->piv[$p];
|
|
$this->piv[$p] = $this->piv[$j];
|
|
$this->piv[$j] = $k;
|
|
$this->pivsign = $this->pivsign * -1;
|
|
}
|
|
// Compute multipliers.
|
|
if (($j < $this->m) && ($this->LU[$j][$j] != 0.0)) {
|
|
for ($i = $j + 1; $i < $this->m; ++$i) {
|
|
$this->LU[$i][$j] /= $this->LU[$j][$j];
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
throw new CalculationException(Matrix::ARGUMENT_TYPE_EXCEPTION);
|
|
}
|
|
}
|
|
|
|
// function __construct()
|
|
|
|
/**
|
|
* Get lower triangular factor.
|
|
*
|
|
* @return Matrix Lower triangular factor
|
|
*/
|
|
public function getL()
|
|
{
|
|
for ($i = 0; $i < $this->m; ++$i) {
|
|
for ($j = 0; $j < $this->n; ++$j) {
|
|
if ($i > $j) {
|
|
$L[$i][$j] = $this->LU[$i][$j];
|
|
} elseif ($i == $j) {
|
|
$L[$i][$j] = 1.0;
|
|
} else {
|
|
$L[$i][$j] = 0.0;
|
|
}
|
|
}
|
|
}
|
|
|
|
return new Matrix($L);
|
|
}
|
|
|
|
// function getL()
|
|
|
|
/**
|
|
* Get upper triangular factor.
|
|
*
|
|
* @return Matrix Upper triangular factor
|
|
*/
|
|
public function getU()
|
|
{
|
|
for ($i = 0; $i < $this->n; ++$i) {
|
|
for ($j = 0; $j < $this->n; ++$j) {
|
|
if ($i <= $j) {
|
|
$U[$i][$j] = $this->LU[$i][$j];
|
|
} else {
|
|
$U[$i][$j] = 0.0;
|
|
}
|
|
}
|
|
}
|
|
|
|
return new Matrix($U);
|
|
}
|
|
|
|
// function getU()
|
|
|
|
/**
|
|
* Return pivot permutation vector.
|
|
*
|
|
* @return array Pivot vector
|
|
*/
|
|
public function getPivot()
|
|
{
|
|
return $this->piv;
|
|
}
|
|
|
|
// function getPivot()
|
|
|
|
/**
|
|
* Alias for getPivot.
|
|
*
|
|
* @see getPivot
|
|
*/
|
|
public function getDoublePivot()
|
|
{
|
|
return $this->getPivot();
|
|
}
|
|
|
|
// function getDoublePivot()
|
|
|
|
/**
|
|
* Is the matrix nonsingular?
|
|
*
|
|
* @return bool true if U, and hence A, is nonsingular
|
|
*/
|
|
public function isNonsingular()
|
|
{
|
|
for ($j = 0; $j < $this->n; ++$j) {
|
|
if ($this->LU[$j][$j] == 0) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// function isNonsingular()
|
|
|
|
/**
|
|
* Count determinants.
|
|
*
|
|
* @return array d matrix deterninat
|
|
*/
|
|
public function det()
|
|
{
|
|
if ($this->m == $this->n) {
|
|
$d = $this->pivsign;
|
|
for ($j = 0; $j < $this->n; ++$j) {
|
|
$d *= $this->LU[$j][$j];
|
|
}
|
|
|
|
return $d;
|
|
}
|
|
|
|
throw new CalculationException(Matrix::MATRIX_DIMENSION_EXCEPTION);
|
|
}
|
|
|
|
// function det()
|
|
|
|
/**
|
|
* Solve A*X = B.
|
|
*
|
|
* @param mixed $B a Matrix with as many rows as A and any number of columns
|
|
*
|
|
* @return Matrix X so that L*U*X = B(piv,:)
|
|
*/
|
|
public function solve($B)
|
|
{
|
|
if ($B->getRowDimension() == $this->m) {
|
|
if ($this->isNonsingular()) {
|
|
// Copy right hand side with pivoting
|
|
$nx = $B->getColumnDimension();
|
|
$X = $B->getMatrix($this->piv, 0, $nx - 1);
|
|
// Solve L*Y = B(piv,:)
|
|
for ($k = 0; $k < $this->n; ++$k) {
|
|
for ($i = $k + 1; $i < $this->n; ++$i) {
|
|
for ($j = 0; $j < $nx; ++$j) {
|
|
$X->A[$i][$j] -= $X->A[$k][$j] * $this->LU[$i][$k];
|
|
}
|
|
}
|
|
}
|
|
// Solve U*X = Y;
|
|
for ($k = $this->n - 1; $k >= 0; --$k) {
|
|
for ($j = 0; $j < $nx; ++$j) {
|
|
$X->A[$k][$j] /= $this->LU[$k][$k];
|
|
}
|
|
for ($i = 0; $i < $k; ++$i) {
|
|
for ($j = 0; $j < $nx; ++$j) {
|
|
$X->A[$i][$j] -= $X->A[$k][$j] * $this->LU[$i][$k];
|
|
}
|
|
}
|
|
}
|
|
|
|
return $X;
|
|
}
|
|
|
|
throw new CalculationException(self::MATRIX_SINGULAR_EXCEPTION);
|
|
}
|
|
|
|
throw new CalculationException(self::MATRIX_SQUARE_EXCEPTION);
|
|
}
|
|
}
|