Alter Version
This commit is contained in:
463
vendor/PhpSpreadsheet/Shared/Trend/BestFit.php
vendored
Normal file
463
vendor/PhpSpreadsheet/Shared/Trend/BestFit.php
vendored
Normal file
@@ -0,0 +1,463 @@
|
||||
<?php
|
||||
|
||||
namespace PhpOffice\PhpSpreadsheet\Shared\Trend;
|
||||
|
||||
class BestFit
|
||||
{
|
||||
/**
|
||||
* Indicator flag for a calculation error.
|
||||
*
|
||||
* @var bool
|
||||
*/
|
||||
protected $error = false;
|
||||
|
||||
/**
|
||||
* Algorithm type to use for best-fit.
|
||||
*
|
||||
* @var string
|
||||
*/
|
||||
protected $bestFitType = 'undetermined';
|
||||
|
||||
/**
|
||||
* Number of entries in the sets of x- and y-value arrays.
|
||||
*
|
||||
* @var int
|
||||
*/
|
||||
protected $valueCount = 0;
|
||||
|
||||
/**
|
||||
* X-value dataseries of values.
|
||||
*
|
||||
* @var float[]
|
||||
*/
|
||||
protected $xValues = [];
|
||||
|
||||
/**
|
||||
* Y-value dataseries of values.
|
||||
*
|
||||
* @var float[]
|
||||
*/
|
||||
protected $yValues = [];
|
||||
|
||||
/**
|
||||
* Flag indicating whether values should be adjusted to Y=0.
|
||||
*
|
||||
* @var bool
|
||||
*/
|
||||
protected $adjustToZero = false;
|
||||
|
||||
/**
|
||||
* Y-value series of best-fit values.
|
||||
*
|
||||
* @var float[]
|
||||
*/
|
||||
protected $yBestFitValues = [];
|
||||
|
||||
protected $goodnessOfFit = 1;
|
||||
|
||||
protected $stdevOfResiduals = 0;
|
||||
|
||||
protected $covariance = 0;
|
||||
|
||||
protected $correlation = 0;
|
||||
|
||||
protected $SSRegression = 0;
|
||||
|
||||
protected $SSResiduals = 0;
|
||||
|
||||
protected $DFResiduals = 0;
|
||||
|
||||
protected $f = 0;
|
||||
|
||||
protected $slope = 0;
|
||||
|
||||
protected $slopeSE = 0;
|
||||
|
||||
protected $intersect = 0;
|
||||
|
||||
protected $intersectSE = 0;
|
||||
|
||||
protected $xOffset = 0;
|
||||
|
||||
protected $yOffset = 0;
|
||||
|
||||
public function getError()
|
||||
{
|
||||
return $this->error;
|
||||
}
|
||||
|
||||
public function getBestFitType()
|
||||
{
|
||||
return $this->bestFitType;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the Y-Value for a specified value of X.
|
||||
*
|
||||
* @param float $xValue X-Value
|
||||
*
|
||||
* @return bool Y-Value
|
||||
*/
|
||||
public function getValueOfYForX($xValue)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the X-Value for a specified value of Y.
|
||||
*
|
||||
* @param float $yValue Y-Value
|
||||
*
|
||||
* @return bool X-Value
|
||||
*/
|
||||
public function getValueOfXForY($yValue)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the original set of X-Values.
|
||||
*
|
||||
* @return float[] X-Values
|
||||
*/
|
||||
public function getXValues()
|
||||
{
|
||||
return $this->xValues;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the Equation of the best-fit line.
|
||||
*
|
||||
* @param int $dp Number of places of decimal precision to display
|
||||
*
|
||||
* @return bool
|
||||
*/
|
||||
public function getEquation($dp = 0)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the Slope of the line.
|
||||
*
|
||||
* @param int $dp Number of places of decimal precision to display
|
||||
*
|
||||
* @return float
|
||||
*/
|
||||
public function getSlope($dp = 0)
|
||||
{
|
||||
if ($dp != 0) {
|
||||
return round($this->slope, $dp);
|
||||
}
|
||||
|
||||
return $this->slope;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the standard error of the Slope.
|
||||
*
|
||||
* @param int $dp Number of places of decimal precision to display
|
||||
*
|
||||
* @return float
|
||||
*/
|
||||
public function getSlopeSE($dp = 0)
|
||||
{
|
||||
if ($dp != 0) {
|
||||
return round($this->slopeSE, $dp);
|
||||
}
|
||||
|
||||
return $this->slopeSE;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the Value of X where it intersects Y = 0.
|
||||
*
|
||||
* @param int $dp Number of places of decimal precision to display
|
||||
*
|
||||
* @return float
|
||||
*/
|
||||
public function getIntersect($dp = 0)
|
||||
{
|
||||
if ($dp != 0) {
|
||||
return round($this->intersect, $dp);
|
||||
}
|
||||
|
||||
return $this->intersect;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the standard error of the Intersect.
|
||||
*
|
||||
* @param int $dp Number of places of decimal precision to display
|
||||
*
|
||||
* @return float
|
||||
*/
|
||||
public function getIntersectSE($dp = 0)
|
||||
{
|
||||
if ($dp != 0) {
|
||||
return round($this->intersectSE, $dp);
|
||||
}
|
||||
|
||||
return $this->intersectSE;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the goodness of fit for this regression.
|
||||
*
|
||||
* @param int $dp Number of places of decimal precision to return
|
||||
*
|
||||
* @return float
|
||||
*/
|
||||
public function getGoodnessOfFit($dp = 0)
|
||||
{
|
||||
if ($dp != 0) {
|
||||
return round($this->goodnessOfFit, $dp);
|
||||
}
|
||||
|
||||
return $this->goodnessOfFit;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the goodness of fit for this regression.
|
||||
*
|
||||
* @param int $dp Number of places of decimal precision to return
|
||||
*
|
||||
* @return float
|
||||
*/
|
||||
public function getGoodnessOfFitPercent($dp = 0)
|
||||
{
|
||||
if ($dp != 0) {
|
||||
return round($this->goodnessOfFit * 100, $dp);
|
||||
}
|
||||
|
||||
return $this->goodnessOfFit * 100;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the standard deviation of the residuals for this regression.
|
||||
*
|
||||
* @param int $dp Number of places of decimal precision to return
|
||||
*
|
||||
* @return float
|
||||
*/
|
||||
public function getStdevOfResiduals($dp = 0)
|
||||
{
|
||||
if ($dp != 0) {
|
||||
return round($this->stdevOfResiduals, $dp);
|
||||
}
|
||||
|
||||
return $this->stdevOfResiduals;
|
||||
}
|
||||
|
||||
/**
|
||||
* @param int $dp Number of places of decimal precision to return
|
||||
*
|
||||
* @return float
|
||||
*/
|
||||
public function getSSRegression($dp = 0)
|
||||
{
|
||||
if ($dp != 0) {
|
||||
return round($this->SSRegression, $dp);
|
||||
}
|
||||
|
||||
return $this->SSRegression;
|
||||
}
|
||||
|
||||
/**
|
||||
* @param int $dp Number of places of decimal precision to return
|
||||
*
|
||||
* @return float
|
||||
*/
|
||||
public function getSSResiduals($dp = 0)
|
||||
{
|
||||
if ($dp != 0) {
|
||||
return round($this->SSResiduals, $dp);
|
||||
}
|
||||
|
||||
return $this->SSResiduals;
|
||||
}
|
||||
|
||||
/**
|
||||
* @param int $dp Number of places of decimal precision to return
|
||||
*
|
||||
* @return float
|
||||
*/
|
||||
public function getDFResiduals($dp = 0)
|
||||
{
|
||||
if ($dp != 0) {
|
||||
return round($this->DFResiduals, $dp);
|
||||
}
|
||||
|
||||
return $this->DFResiduals;
|
||||
}
|
||||
|
||||
/**
|
||||
* @param int $dp Number of places of decimal precision to return
|
||||
*
|
||||
* @return float
|
||||
*/
|
||||
public function getF($dp = 0)
|
||||
{
|
||||
if ($dp != 0) {
|
||||
return round($this->f, $dp);
|
||||
}
|
||||
|
||||
return $this->f;
|
||||
}
|
||||
|
||||
/**
|
||||
* @param int $dp Number of places of decimal precision to return
|
||||
*
|
||||
* @return float
|
||||
*/
|
||||
public function getCovariance($dp = 0)
|
||||
{
|
||||
if ($dp != 0) {
|
||||
return round($this->covariance, $dp);
|
||||
}
|
||||
|
||||
return $this->covariance;
|
||||
}
|
||||
|
||||
/**
|
||||
* @param int $dp Number of places of decimal precision to return
|
||||
*
|
||||
* @return float
|
||||
*/
|
||||
public function getCorrelation($dp = 0)
|
||||
{
|
||||
if ($dp != 0) {
|
||||
return round($this->correlation, $dp);
|
||||
}
|
||||
|
||||
return $this->correlation;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return float[]
|
||||
*/
|
||||
public function getYBestFitValues()
|
||||
{
|
||||
return $this->yBestFitValues;
|
||||
}
|
||||
|
||||
protected function calculateGoodnessOfFit($sumX, $sumY, $sumX2, $sumY2, $sumXY, $meanX, $meanY, $const): void
|
||||
{
|
||||
$SSres = $SScov = $SScor = $SStot = $SSsex = 0.0;
|
||||
foreach ($this->xValues as $xKey => $xValue) {
|
||||
$bestFitY = $this->yBestFitValues[$xKey] = $this->getValueOfYForX($xValue);
|
||||
|
||||
$SSres += ($this->yValues[$xKey] - $bestFitY) * ($this->yValues[$xKey] - $bestFitY);
|
||||
if ($const) {
|
||||
$SStot += ($this->yValues[$xKey] - $meanY) * ($this->yValues[$xKey] - $meanY);
|
||||
} else {
|
||||
$SStot += $this->yValues[$xKey] * $this->yValues[$xKey];
|
||||
}
|
||||
$SScov += ($this->xValues[$xKey] - $meanX) * ($this->yValues[$xKey] - $meanY);
|
||||
if ($const) {
|
||||
$SSsex += ($this->xValues[$xKey] - $meanX) * ($this->xValues[$xKey] - $meanX);
|
||||
} else {
|
||||
$SSsex += $this->xValues[$xKey] * $this->xValues[$xKey];
|
||||
}
|
||||
}
|
||||
|
||||
$this->SSResiduals = $SSres;
|
||||
$this->DFResiduals = $this->valueCount - 1 - $const;
|
||||
|
||||
if ($this->DFResiduals == 0.0) {
|
||||
$this->stdevOfResiduals = 0.0;
|
||||
} else {
|
||||
$this->stdevOfResiduals = sqrt($SSres / $this->DFResiduals);
|
||||
}
|
||||
if (($SStot == 0.0) || ($SSres == $SStot)) {
|
||||
$this->goodnessOfFit = 1;
|
||||
} else {
|
||||
$this->goodnessOfFit = 1 - ($SSres / $SStot);
|
||||
}
|
||||
|
||||
$this->SSRegression = $this->goodnessOfFit * $SStot;
|
||||
$this->covariance = $SScov / $this->valueCount;
|
||||
$this->correlation = ($this->valueCount * $sumXY - $sumX * $sumY) / sqrt(($this->valueCount * $sumX2 - $sumX ** 2) * ($this->valueCount * $sumY2 - $sumY ** 2));
|
||||
$this->slopeSE = $this->stdevOfResiduals / sqrt($SSsex);
|
||||
$this->intersectSE = $this->stdevOfResiduals * sqrt(1 / ($this->valueCount - ($sumX * $sumX) / $sumX2));
|
||||
if ($this->SSResiduals != 0.0) {
|
||||
if ($this->DFResiduals == 0.0) {
|
||||
$this->f = 0.0;
|
||||
} else {
|
||||
$this->f = $this->SSRegression / ($this->SSResiduals / $this->DFResiduals);
|
||||
}
|
||||
} else {
|
||||
if ($this->DFResiduals == 0.0) {
|
||||
$this->f = 0.0;
|
||||
} else {
|
||||
$this->f = $this->SSRegression / $this->DFResiduals;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @param float[] $yValues
|
||||
* @param float[] $xValues
|
||||
* @param bool $const
|
||||
*/
|
||||
protected function leastSquareFit(array $yValues, array $xValues, $const): void
|
||||
{
|
||||
// calculate sums
|
||||
$x_sum = array_sum($xValues);
|
||||
$y_sum = array_sum($yValues);
|
||||
$meanX = $x_sum / $this->valueCount;
|
||||
$meanY = $y_sum / $this->valueCount;
|
||||
$mBase = $mDivisor = $xx_sum = $xy_sum = $yy_sum = 0.0;
|
||||
for ($i = 0; $i < $this->valueCount; ++$i) {
|
||||
$xy_sum += $xValues[$i] * $yValues[$i];
|
||||
$xx_sum += $xValues[$i] * $xValues[$i];
|
||||
$yy_sum += $yValues[$i] * $yValues[$i];
|
||||
|
||||
if ($const) {
|
||||
$mBase += ($xValues[$i] - $meanX) * ($yValues[$i] - $meanY);
|
||||
$mDivisor += ($xValues[$i] - $meanX) * ($xValues[$i] - $meanX);
|
||||
} else {
|
||||
$mBase += $xValues[$i] * $yValues[$i];
|
||||
$mDivisor += $xValues[$i] * $xValues[$i];
|
||||
}
|
||||
}
|
||||
|
||||
// calculate slope
|
||||
$this->slope = $mBase / $mDivisor;
|
||||
|
||||
// calculate intersect
|
||||
if ($const) {
|
||||
$this->intersect = $meanY - ($this->slope * $meanX);
|
||||
} else {
|
||||
$this->intersect = 0;
|
||||
}
|
||||
|
||||
$this->calculateGoodnessOfFit($x_sum, $y_sum, $xx_sum, $yy_sum, $xy_sum, $meanX, $meanY, $const);
|
||||
}
|
||||
|
||||
/**
|
||||
* Define the regression.
|
||||
*
|
||||
* @param float[] $yValues The set of Y-values for this regression
|
||||
* @param float[] $xValues The set of X-values for this regression
|
||||
* @param bool $const
|
||||
*/
|
||||
public function __construct($yValues, $xValues = [], $const = true)
|
||||
{
|
||||
// Calculate number of points
|
||||
$nY = count($yValues);
|
||||
$nX = count($xValues);
|
||||
|
||||
// Define X Values if necessary
|
||||
if ($nX == 0) {
|
||||
$xValues = range(1, $nY);
|
||||
} elseif ($nY != $nX) {
|
||||
// Ensure both arrays of points are the same size
|
||||
$this->error = true;
|
||||
}
|
||||
|
||||
$this->valueCount = $nY;
|
||||
$this->xValues = $xValues;
|
||||
$this->yValues = $yValues;
|
||||
}
|
||||
}
|
||||
122
vendor/PhpSpreadsheet/Shared/Trend/ExponentialBestFit.php
vendored
Normal file
122
vendor/PhpSpreadsheet/Shared/Trend/ExponentialBestFit.php
vendored
Normal file
@@ -0,0 +1,122 @@
|
||||
<?php
|
||||
|
||||
namespace PhpOffice\PhpSpreadsheet\Shared\Trend;
|
||||
|
||||
class ExponentialBestFit extends BestFit
|
||||
{
|
||||
/**
|
||||
* Algorithm type to use for best-fit
|
||||
* (Name of this Trend class).
|
||||
*
|
||||
* @var string
|
||||
*/
|
||||
protected $bestFitType = 'exponential';
|
||||
|
||||
/**
|
||||
* Return the Y-Value for a specified value of X.
|
||||
*
|
||||
* @param float $xValue X-Value
|
||||
*
|
||||
* @return float Y-Value
|
||||
*/
|
||||
public function getValueOfYForX($xValue)
|
||||
{
|
||||
return $this->getIntersect() * $this->getSlope() ** ($xValue - $this->xOffset);
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the X-Value for a specified value of Y.
|
||||
*
|
||||
* @param float $yValue Y-Value
|
||||
*
|
||||
* @return float X-Value
|
||||
*/
|
||||
public function getValueOfXForY($yValue)
|
||||
{
|
||||
return log(($yValue + $this->yOffset) / $this->getIntersect()) / log($this->getSlope());
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the Equation of the best-fit line.
|
||||
*
|
||||
* @param int $dp Number of places of decimal precision to display
|
||||
*
|
||||
* @return string
|
||||
*/
|
||||
public function getEquation($dp = 0)
|
||||
{
|
||||
$slope = $this->getSlope($dp);
|
||||
$intersect = $this->getIntersect($dp);
|
||||
|
||||
return 'Y = ' . $intersect . ' * ' . $slope . '^X';
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the Slope of the line.
|
||||
*
|
||||
* @param int $dp Number of places of decimal precision to display
|
||||
*
|
||||
* @return float
|
||||
*/
|
||||
public function getSlope($dp = 0)
|
||||
{
|
||||
if ($dp != 0) {
|
||||
return round(exp($this->slope), $dp);
|
||||
}
|
||||
|
||||
return exp($this->slope);
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the Value of X where it intersects Y = 0.
|
||||
*
|
||||
* @param int $dp Number of places of decimal precision to display
|
||||
*
|
||||
* @return float
|
||||
*/
|
||||
public function getIntersect($dp = 0)
|
||||
{
|
||||
if ($dp != 0) {
|
||||
return round(exp($this->intersect), $dp);
|
||||
}
|
||||
|
||||
return exp($this->intersect);
|
||||
}
|
||||
|
||||
/**
|
||||
* Execute the regression and calculate the goodness of fit for a set of X and Y data values.
|
||||
*
|
||||
* @param float[] $yValues The set of Y-values for this regression
|
||||
* @param float[] $xValues The set of X-values for this regression
|
||||
* @param bool $const
|
||||
*/
|
||||
private function exponentialRegression($yValues, $xValues, $const): void
|
||||
{
|
||||
foreach ($yValues as &$value) {
|
||||
if ($value < 0.0) {
|
||||
$value = 0 - log(abs($value));
|
||||
} elseif ($value > 0.0) {
|
||||
$value = log($value);
|
||||
}
|
||||
}
|
||||
unset($value);
|
||||
|
||||
$this->leastSquareFit($yValues, $xValues, $const);
|
||||
}
|
||||
|
||||
/**
|
||||
* Define the regression and calculate the goodness of fit for a set of X and Y data values.
|
||||
*
|
||||
* @param float[] $yValues The set of Y-values for this regression
|
||||
* @param float[] $xValues The set of X-values for this regression
|
||||
* @param bool $const
|
||||
*/
|
||||
public function __construct($yValues, $xValues = [], $const = true)
|
||||
{
|
||||
parent::__construct($yValues, $xValues);
|
||||
|
||||
if (!$this->error) {
|
||||
$this->exponentialRegression($yValues, $xValues, $const);
|
||||
}
|
||||
}
|
||||
}
|
||||
81
vendor/PhpSpreadsheet/Shared/Trend/LinearBestFit.php
vendored
Normal file
81
vendor/PhpSpreadsheet/Shared/Trend/LinearBestFit.php
vendored
Normal file
@@ -0,0 +1,81 @@
|
||||
<?php
|
||||
|
||||
namespace PhpOffice\PhpSpreadsheet\Shared\Trend;
|
||||
|
||||
class LinearBestFit extends BestFit
|
||||
{
|
||||
/**
|
||||
* Algorithm type to use for best-fit
|
||||
* (Name of this Trend class).
|
||||
*
|
||||
* @var string
|
||||
*/
|
||||
protected $bestFitType = 'linear';
|
||||
|
||||
/**
|
||||
* Return the Y-Value for a specified value of X.
|
||||
*
|
||||
* @param float $xValue X-Value
|
||||
*
|
||||
* @return float Y-Value
|
||||
*/
|
||||
public function getValueOfYForX($xValue)
|
||||
{
|
||||
return $this->getIntersect() + $this->getSlope() * $xValue;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the X-Value for a specified value of Y.
|
||||
*
|
||||
* @param float $yValue Y-Value
|
||||
*
|
||||
* @return float X-Value
|
||||
*/
|
||||
public function getValueOfXForY($yValue)
|
||||
{
|
||||
return ($yValue - $this->getIntersect()) / $this->getSlope();
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the Equation of the best-fit line.
|
||||
*
|
||||
* @param int $dp Number of places of decimal precision to display
|
||||
*
|
||||
* @return string
|
||||
*/
|
||||
public function getEquation($dp = 0)
|
||||
{
|
||||
$slope = $this->getSlope($dp);
|
||||
$intersect = $this->getIntersect($dp);
|
||||
|
||||
return 'Y = ' . $intersect . ' + ' . $slope . ' * X';
|
||||
}
|
||||
|
||||
/**
|
||||
* Execute the regression and calculate the goodness of fit for a set of X and Y data values.
|
||||
*
|
||||
* @param float[] $yValues The set of Y-values for this regression
|
||||
* @param float[] $xValues The set of X-values for this regression
|
||||
* @param bool $const
|
||||
*/
|
||||
private function linearRegression($yValues, $xValues, $const): void
|
||||
{
|
||||
$this->leastSquareFit($yValues, $xValues, $const);
|
||||
}
|
||||
|
||||
/**
|
||||
* Define the regression and calculate the goodness of fit for a set of X and Y data values.
|
||||
*
|
||||
* @param float[] $yValues The set of Y-values for this regression
|
||||
* @param float[] $xValues The set of X-values for this regression
|
||||
* @param bool $const
|
||||
*/
|
||||
public function __construct($yValues, $xValues = [], $const = true)
|
||||
{
|
||||
parent::__construct($yValues, $xValues);
|
||||
|
||||
if (!$this->error) {
|
||||
$this->linearRegression($yValues, $xValues, $const);
|
||||
}
|
||||
}
|
||||
}
|
||||
90
vendor/PhpSpreadsheet/Shared/Trend/LogarithmicBestFit.php
vendored
Normal file
90
vendor/PhpSpreadsheet/Shared/Trend/LogarithmicBestFit.php
vendored
Normal file
@@ -0,0 +1,90 @@
|
||||
<?php
|
||||
|
||||
namespace PhpOffice\PhpSpreadsheet\Shared\Trend;
|
||||
|
||||
class LogarithmicBestFit extends BestFit
|
||||
{
|
||||
/**
|
||||
* Algorithm type to use for best-fit
|
||||
* (Name of this Trend class).
|
||||
*
|
||||
* @var string
|
||||
*/
|
||||
protected $bestFitType = 'logarithmic';
|
||||
|
||||
/**
|
||||
* Return the Y-Value for a specified value of X.
|
||||
*
|
||||
* @param float $xValue X-Value
|
||||
*
|
||||
* @return float Y-Value
|
||||
*/
|
||||
public function getValueOfYForX($xValue)
|
||||
{
|
||||
return $this->getIntersect() + $this->getSlope() * log($xValue - $this->xOffset);
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the X-Value for a specified value of Y.
|
||||
*
|
||||
* @param float $yValue Y-Value
|
||||
*
|
||||
* @return float X-Value
|
||||
*/
|
||||
public function getValueOfXForY($yValue)
|
||||
{
|
||||
return exp(($yValue - $this->getIntersect()) / $this->getSlope());
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the Equation of the best-fit line.
|
||||
*
|
||||
* @param int $dp Number of places of decimal precision to display
|
||||
*
|
||||
* @return string
|
||||
*/
|
||||
public function getEquation($dp = 0)
|
||||
{
|
||||
$slope = $this->getSlope($dp);
|
||||
$intersect = $this->getIntersect($dp);
|
||||
|
||||
return 'Y = ' . $intersect . ' + ' . $slope . ' * log(X)';
|
||||
}
|
||||
|
||||
/**
|
||||
* Execute the regression and calculate the goodness of fit for a set of X and Y data values.
|
||||
*
|
||||
* @param float[] $yValues The set of Y-values for this regression
|
||||
* @param float[] $xValues The set of X-values for this regression
|
||||
* @param bool $const
|
||||
*/
|
||||
private function logarithmicRegression($yValues, $xValues, $const): void
|
||||
{
|
||||
foreach ($xValues as &$value) {
|
||||
if ($value < 0.0) {
|
||||
$value = 0 - log(abs($value));
|
||||
} elseif ($value > 0.0) {
|
||||
$value = log($value);
|
||||
}
|
||||
}
|
||||
unset($value);
|
||||
|
||||
$this->leastSquareFit($yValues, $xValues, $const);
|
||||
}
|
||||
|
||||
/**
|
||||
* Define the regression and calculate the goodness of fit for a set of X and Y data values.
|
||||
*
|
||||
* @param float[] $yValues The set of Y-values for this regression
|
||||
* @param float[] $xValues The set of X-values for this regression
|
||||
* @param bool $const
|
||||
*/
|
||||
public function __construct($yValues, $xValues = [], $const = true)
|
||||
{
|
||||
parent::__construct($yValues, $xValues);
|
||||
|
||||
if (!$this->error) {
|
||||
$this->logarithmicRegression($yValues, $xValues, $const);
|
||||
}
|
||||
}
|
||||
}
|
||||
200
vendor/PhpSpreadsheet/Shared/Trend/PolynomialBestFit.php
vendored
Normal file
200
vendor/PhpSpreadsheet/Shared/Trend/PolynomialBestFit.php
vendored
Normal file
@@ -0,0 +1,200 @@
|
||||
<?php
|
||||
|
||||
namespace PhpOffice\PhpSpreadsheet\Shared\Trend;
|
||||
|
||||
use PhpOffice\PhpSpreadsheet\Shared\JAMA\Matrix;
|
||||
|
||||
class PolynomialBestFit extends BestFit
|
||||
{
|
||||
/**
|
||||
* Algorithm type to use for best-fit
|
||||
* (Name of this Trend class).
|
||||
*
|
||||
* @var string
|
||||
*/
|
||||
protected $bestFitType = 'polynomial';
|
||||
|
||||
/**
|
||||
* Polynomial order.
|
||||
*
|
||||
* @var int
|
||||
*/
|
||||
protected $order = 0;
|
||||
|
||||
/**
|
||||
* Return the order of this polynomial.
|
||||
*
|
||||
* @return int
|
||||
*/
|
||||
public function getOrder()
|
||||
{
|
||||
return $this->order;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the Y-Value for a specified value of X.
|
||||
*
|
||||
* @param float $xValue X-Value
|
||||
*
|
||||
* @return float Y-Value
|
||||
*/
|
||||
public function getValueOfYForX($xValue)
|
||||
{
|
||||
$retVal = $this->getIntersect();
|
||||
$slope = $this->getSlope();
|
||||
foreach ($slope as $key => $value) {
|
||||
if ($value != 0.0) {
|
||||
$retVal += $value * $xValue ** ($key + 1);
|
||||
}
|
||||
}
|
||||
|
||||
return $retVal;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the X-Value for a specified value of Y.
|
||||
*
|
||||
* @param float $yValue Y-Value
|
||||
*
|
||||
* @return float X-Value
|
||||
*/
|
||||
public function getValueOfXForY($yValue)
|
||||
{
|
||||
return ($yValue - $this->getIntersect()) / $this->getSlope();
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the Equation of the best-fit line.
|
||||
*
|
||||
* @param int $dp Number of places of decimal precision to display
|
||||
*
|
||||
* @return string
|
||||
*/
|
||||
public function getEquation($dp = 0)
|
||||
{
|
||||
$slope = $this->getSlope($dp);
|
||||
$intersect = $this->getIntersect($dp);
|
||||
|
||||
$equation = 'Y = ' . $intersect;
|
||||
foreach ($slope as $key => $value) {
|
||||
if ($value != 0.0) {
|
||||
$equation .= ' + ' . $value . ' * X';
|
||||
if ($key > 0) {
|
||||
$equation .= '^' . ($key + 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return $equation;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the Slope of the line.
|
||||
*
|
||||
* @param int $dp Number of places of decimal precision to display
|
||||
*
|
||||
* @return string
|
||||
*/
|
||||
public function getSlope($dp = 0)
|
||||
{
|
||||
if ($dp != 0) {
|
||||
$coefficients = [];
|
||||
foreach ($this->slope as $coefficient) {
|
||||
$coefficients[] = round($coefficient, $dp);
|
||||
}
|
||||
|
||||
return $coefficients;
|
||||
}
|
||||
|
||||
return $this->slope;
|
||||
}
|
||||
|
||||
public function getCoefficients($dp = 0)
|
||||
{
|
||||
return array_merge([$this->getIntersect($dp)], $this->getSlope($dp));
|
||||
}
|
||||
|
||||
/**
|
||||
* Execute the regression and calculate the goodness of fit for a set of X and Y data values.
|
||||
*
|
||||
* @param int $order Order of Polynomial for this regression
|
||||
* @param float[] $yValues The set of Y-values for this regression
|
||||
* @param float[] $xValues The set of X-values for this regression
|
||||
*/
|
||||
private function polynomialRegression($order, $yValues, $xValues): void
|
||||
{
|
||||
// calculate sums
|
||||
$x_sum = array_sum($xValues);
|
||||
$y_sum = array_sum($yValues);
|
||||
$xx_sum = $xy_sum = $yy_sum = 0;
|
||||
for ($i = 0; $i < $this->valueCount; ++$i) {
|
||||
$xy_sum += $xValues[$i] * $yValues[$i];
|
||||
$xx_sum += $xValues[$i] * $xValues[$i];
|
||||
$yy_sum += $yValues[$i] * $yValues[$i];
|
||||
}
|
||||
/*
|
||||
* This routine uses logic from the PHP port of polyfit version 0.1
|
||||
* written by Michael Bommarito and Paul Meagher
|
||||
*
|
||||
* The function fits a polynomial function of order $order through
|
||||
* a series of x-y data points using least squares.
|
||||
*
|
||||
*/
|
||||
$A = [];
|
||||
$B = [];
|
||||
for ($i = 0; $i < $this->valueCount; ++$i) {
|
||||
for ($j = 0; $j <= $order; ++$j) {
|
||||
$A[$i][$j] = $xValues[$i] ** $j;
|
||||
}
|
||||
}
|
||||
for ($i = 0; $i < $this->valueCount; ++$i) {
|
||||
$B[$i] = [$yValues[$i]];
|
||||
}
|
||||
$matrixA = new Matrix($A);
|
||||
$matrixB = new Matrix($B);
|
||||
$C = $matrixA->solve($matrixB);
|
||||
|
||||
$coefficients = [];
|
||||
for ($i = 0; $i < $C->getRowDimension(); ++$i) {
|
||||
$r = $C->get($i, 0);
|
||||
if (abs($r) <= 10 ** (-9)) {
|
||||
$r = 0;
|
||||
}
|
||||
$coefficients[] = $r;
|
||||
}
|
||||
|
||||
$this->intersect = array_shift($coefficients);
|
||||
$this->slope = $coefficients;
|
||||
|
||||
$this->calculateGoodnessOfFit($x_sum, $y_sum, $xx_sum, $yy_sum, $xy_sum, 0, 0, 0);
|
||||
foreach ($this->xValues as $xKey => $xValue) {
|
||||
$this->yBestFitValues[$xKey] = $this->getValueOfYForX($xValue);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Define the regression and calculate the goodness of fit for a set of X and Y data values.
|
||||
*
|
||||
* @param int $order Order of Polynomial for this regression
|
||||
* @param float[] $yValues The set of Y-values for this regression
|
||||
* @param float[] $xValues The set of X-values for this regression
|
||||
* @param bool $const
|
||||
*/
|
||||
public function __construct($order, $yValues, $xValues = [], $const = true)
|
||||
{
|
||||
parent::__construct($yValues, $xValues);
|
||||
|
||||
if (!$this->error) {
|
||||
if ($order < $this->valueCount) {
|
||||
$this->bestFitType .= '_' . $order;
|
||||
$this->order = $order;
|
||||
$this->polynomialRegression($order, $yValues, $xValues);
|
||||
if (($this->getGoodnessOfFit() < 0.0) || ($this->getGoodnessOfFit() > 1.0)) {
|
||||
$this->error = true;
|
||||
}
|
||||
} else {
|
||||
$this->error = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
114
vendor/PhpSpreadsheet/Shared/Trend/PowerBestFit.php
vendored
Normal file
114
vendor/PhpSpreadsheet/Shared/Trend/PowerBestFit.php
vendored
Normal file
@@ -0,0 +1,114 @@
|
||||
<?php
|
||||
|
||||
namespace PhpOffice\PhpSpreadsheet\Shared\Trend;
|
||||
|
||||
class PowerBestFit extends BestFit
|
||||
{
|
||||
/**
|
||||
* Algorithm type to use for best-fit
|
||||
* (Name of this Trend class).
|
||||
*
|
||||
* @var string
|
||||
*/
|
||||
protected $bestFitType = 'power';
|
||||
|
||||
/**
|
||||
* Return the Y-Value for a specified value of X.
|
||||
*
|
||||
* @param float $xValue X-Value
|
||||
*
|
||||
* @return float Y-Value
|
||||
*/
|
||||
public function getValueOfYForX($xValue)
|
||||
{
|
||||
return $this->getIntersect() * ($xValue - $this->xOffset) ** $this->getSlope();
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the X-Value for a specified value of Y.
|
||||
*
|
||||
* @param float $yValue Y-Value
|
||||
*
|
||||
* @return float X-Value
|
||||
*/
|
||||
public function getValueOfXForY($yValue)
|
||||
{
|
||||
return (($yValue + $this->yOffset) / $this->getIntersect()) ** (1 / $this->getSlope());
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the Equation of the best-fit line.
|
||||
*
|
||||
* @param int $dp Number of places of decimal precision to display
|
||||
*
|
||||
* @return string
|
||||
*/
|
||||
public function getEquation($dp = 0)
|
||||
{
|
||||
$slope = $this->getSlope($dp);
|
||||
$intersect = $this->getIntersect($dp);
|
||||
|
||||
return 'Y = ' . $intersect . ' * X^' . $slope;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the Value of X where it intersects Y = 0.
|
||||
*
|
||||
* @param int $dp Number of places of decimal precision to display
|
||||
*
|
||||
* @return float
|
||||
*/
|
||||
public function getIntersect($dp = 0)
|
||||
{
|
||||
if ($dp != 0) {
|
||||
return round(exp($this->intersect), $dp);
|
||||
}
|
||||
|
||||
return exp($this->intersect);
|
||||
}
|
||||
|
||||
/**
|
||||
* Execute the regression and calculate the goodness of fit for a set of X and Y data values.
|
||||
*
|
||||
* @param float[] $yValues The set of Y-values for this regression
|
||||
* @param float[] $xValues The set of X-values for this regression
|
||||
* @param bool $const
|
||||
*/
|
||||
private function powerRegression($yValues, $xValues, $const): void
|
||||
{
|
||||
foreach ($xValues as &$value) {
|
||||
if ($value < 0.0) {
|
||||
$value = 0 - log(abs($value));
|
||||
} elseif ($value > 0.0) {
|
||||
$value = log($value);
|
||||
}
|
||||
}
|
||||
unset($value);
|
||||
foreach ($yValues as &$value) {
|
||||
if ($value < 0.0) {
|
||||
$value = 0 - log(abs($value));
|
||||
} elseif ($value > 0.0) {
|
||||
$value = log($value);
|
||||
}
|
||||
}
|
||||
unset($value);
|
||||
|
||||
$this->leastSquareFit($yValues, $xValues, $const);
|
||||
}
|
||||
|
||||
/**
|
||||
* Define the regression and calculate the goodness of fit for a set of X and Y data values.
|
||||
*
|
||||
* @param float[] $yValues The set of Y-values for this regression
|
||||
* @param float[] $xValues The set of X-values for this regression
|
||||
* @param bool $const
|
||||
*/
|
||||
public function __construct($yValues, $xValues = [], $const = true)
|
||||
{
|
||||
parent::__construct($yValues, $xValues);
|
||||
|
||||
if (!$this->error) {
|
||||
$this->powerRegression($yValues, $xValues, $const);
|
||||
}
|
||||
}
|
||||
}
|
||||
120
vendor/PhpSpreadsheet/Shared/Trend/Trend.php
vendored
Normal file
120
vendor/PhpSpreadsheet/Shared/Trend/Trend.php
vendored
Normal file
@@ -0,0 +1,120 @@
|
||||
<?php
|
||||
|
||||
namespace PhpOffice\PhpSpreadsheet\Shared\Trend;
|
||||
|
||||
class Trend
|
||||
{
|
||||
const TREND_LINEAR = 'Linear';
|
||||
const TREND_LOGARITHMIC = 'Logarithmic';
|
||||
const TREND_EXPONENTIAL = 'Exponential';
|
||||
const TREND_POWER = 'Power';
|
||||
const TREND_POLYNOMIAL_2 = 'Polynomial_2';
|
||||
const TREND_POLYNOMIAL_3 = 'Polynomial_3';
|
||||
const TREND_POLYNOMIAL_4 = 'Polynomial_4';
|
||||
const TREND_POLYNOMIAL_5 = 'Polynomial_5';
|
||||
const TREND_POLYNOMIAL_6 = 'Polynomial_6';
|
||||
const TREND_BEST_FIT = 'Bestfit';
|
||||
const TREND_BEST_FIT_NO_POLY = 'Bestfit_no_Polynomials';
|
||||
|
||||
/**
|
||||
* Names of the best-fit Trend analysis methods.
|
||||
*
|
||||
* @var string[]
|
||||
*/
|
||||
private static $trendTypes = [
|
||||
self::TREND_LINEAR,
|
||||
self::TREND_LOGARITHMIC,
|
||||
self::TREND_EXPONENTIAL,
|
||||
self::TREND_POWER,
|
||||
];
|
||||
|
||||
/**
|
||||
* Names of the best-fit Trend polynomial orders.
|
||||
*
|
||||
* @var string[]
|
||||
*/
|
||||
private static $trendTypePolynomialOrders = [
|
||||
self::TREND_POLYNOMIAL_2,
|
||||
self::TREND_POLYNOMIAL_3,
|
||||
self::TREND_POLYNOMIAL_4,
|
||||
self::TREND_POLYNOMIAL_5,
|
||||
self::TREND_POLYNOMIAL_6,
|
||||
];
|
||||
|
||||
/**
|
||||
* Cached results for each method when trying to identify which provides the best fit.
|
||||
*
|
||||
* @var bestFit[]
|
||||
*/
|
||||
private static $trendCache = [];
|
||||
|
||||
public static function calculate($trendType = self::TREND_BEST_FIT, $yValues = [], $xValues = [], $const = true)
|
||||
{
|
||||
// Calculate number of points in each dataset
|
||||
$nY = count($yValues);
|
||||
$nX = count($xValues);
|
||||
|
||||
// Define X Values if necessary
|
||||
if ($nX == 0) {
|
||||
$xValues = range(1, $nY);
|
||||
$nX = $nY;
|
||||
} elseif ($nY != $nX) {
|
||||
// Ensure both arrays of points are the same size
|
||||
trigger_error('Trend(): Number of elements in coordinate arrays do not match.', E_USER_ERROR);
|
||||
}
|
||||
|
||||
$key = md5($trendType . $const . serialize($yValues) . serialize($xValues));
|
||||
// Determine which Trend method has been requested
|
||||
switch ($trendType) {
|
||||
// Instantiate and return the class for the requested Trend method
|
||||
case self::TREND_LINEAR:
|
||||
case self::TREND_LOGARITHMIC:
|
||||
case self::TREND_EXPONENTIAL:
|
||||
case self::TREND_POWER:
|
||||
if (!isset(self::$trendCache[$key])) {
|
||||
$className = '\PhpOffice\PhpSpreadsheet\Shared\Trend\\' . $trendType . 'BestFit';
|
||||
self::$trendCache[$key] = new $className($yValues, $xValues, $const);
|
||||
}
|
||||
|
||||
return self::$trendCache[$key];
|
||||
case self::TREND_POLYNOMIAL_2:
|
||||
case self::TREND_POLYNOMIAL_3:
|
||||
case self::TREND_POLYNOMIAL_4:
|
||||
case self::TREND_POLYNOMIAL_5:
|
||||
case self::TREND_POLYNOMIAL_6:
|
||||
if (!isset(self::$trendCache[$key])) {
|
||||
$order = substr($trendType, -1);
|
||||
self::$trendCache[$key] = new PolynomialBestFit($order, $yValues, $xValues, $const);
|
||||
}
|
||||
|
||||
return self::$trendCache[$key];
|
||||
case self::TREND_BEST_FIT:
|
||||
case self::TREND_BEST_FIT_NO_POLY:
|
||||
// If the request is to determine the best fit regression, then we test each Trend line in turn
|
||||
// Start by generating an instance of each available Trend method
|
||||
foreach (self::$trendTypes as $trendMethod) {
|
||||
$className = '\PhpOffice\PhpSpreadsheet\Shared\Trend\\' . $trendType . 'BestFit';
|
||||
$bestFit[$trendMethod] = new $className($yValues, $xValues, $const);
|
||||
$bestFitValue[$trendMethod] = $bestFit[$trendMethod]->getGoodnessOfFit();
|
||||
}
|
||||
if ($trendType != self::TREND_BEST_FIT_NO_POLY) {
|
||||
foreach (self::$trendTypePolynomialOrders as $trendMethod) {
|
||||
$order = substr($trendMethod, -1);
|
||||
$bestFit[$trendMethod] = new PolynomialBestFit($order, $yValues, $xValues, $const);
|
||||
if ($bestFit[$trendMethod]->getError()) {
|
||||
unset($bestFit[$trendMethod]);
|
||||
} else {
|
||||
$bestFitValue[$trendMethod] = $bestFit[$trendMethod]->getGoodnessOfFit();
|
||||
}
|
||||
}
|
||||
}
|
||||
// Determine which of our Trend lines is the best fit, and then we return the instance of that Trend class
|
||||
arsort($bestFitValue);
|
||||
$bestFitType = key($bestFitValue);
|
||||
|
||||
return $bestFit[$bestFitType];
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user