Alter Version
This commit is contained in:
16
vendor/PhpSpreadsheet/Shared/JAMA/CHANGELOG.TXT
vendored
Normal file
16
vendor/PhpSpreadsheet/Shared/JAMA/CHANGELOG.TXT
vendored
Normal file
@@ -0,0 +1,16 @@
|
||||
Mar 1, 2005 11:15 AST by PM
|
||||
|
||||
+ For consistency, renamed Math.php to Maths.java, utils to util,
|
||||
tests to test, docs to doc -
|
||||
|
||||
+ Removed conditional logic from top of Matrix class.
|
||||
|
||||
+ Switched to using hypo function in Maths.php for all php-hypot calls.
|
||||
NOTE TO SELF: Need to make sure that all decompositions have been
|
||||
switched over to using the bundled hypo.
|
||||
|
||||
Feb 25, 2005 at 10:00 AST by PM
|
||||
|
||||
+ Recommend using simpler Error.php instead of JAMA_Error.php but
|
||||
can be persuaded otherwise.
|
||||
|
||||
147
vendor/PhpSpreadsheet/Shared/JAMA/CholeskyDecomposition.php
vendored
Normal file
147
vendor/PhpSpreadsheet/Shared/JAMA/CholeskyDecomposition.php
vendored
Normal file
@@ -0,0 +1,147 @@
|
||||
<?php
|
||||
|
||||
namespace PhpOffice\PhpSpreadsheet\Shared\JAMA;
|
||||
|
||||
use PhpOffice\PhpSpreadsheet\Calculation\Exception as CalculationException;
|
||||
|
||||
/**
|
||||
* Cholesky decomposition class.
|
||||
*
|
||||
* For a symmetric, positive definite matrix A, the Cholesky decomposition
|
||||
* is an lower triangular matrix L so that A = L*L'.
|
||||
*
|
||||
* If the matrix is not symmetric or positive definite, the constructor
|
||||
* returns a partial decomposition and sets an internal flag that may
|
||||
* be queried by the isSPD() method.
|
||||
*
|
||||
* @author Paul Meagher
|
||||
* @author Michael Bommarito
|
||||
*
|
||||
* @version 1.2
|
||||
*/
|
||||
class CholeskyDecomposition
|
||||
{
|
||||
/**
|
||||
* Decomposition storage.
|
||||
*
|
||||
* @var array
|
||||
*/
|
||||
private $L = [];
|
||||
|
||||
/**
|
||||
* Matrix row and column dimension.
|
||||
*
|
||||
* @var int
|
||||
*/
|
||||
private $m;
|
||||
|
||||
/**
|
||||
* Symmetric positive definite flag.
|
||||
*
|
||||
* @var bool
|
||||
*/
|
||||
private $isspd = true;
|
||||
|
||||
/**
|
||||
* CholeskyDecomposition.
|
||||
*
|
||||
* Class constructor - decomposes symmetric positive definite matrix
|
||||
*
|
||||
* @param Matrix $A Matrix square symmetric positive definite matrix
|
||||
*/
|
||||
public function __construct(Matrix $A)
|
||||
{
|
||||
$this->L = $A->getArray();
|
||||
$this->m = $A->getRowDimension();
|
||||
|
||||
for ($i = 0; $i < $this->m; ++$i) {
|
||||
for ($j = $i; $j < $this->m; ++$j) {
|
||||
for ($sum = $this->L[$i][$j], $k = $i - 1; $k >= 0; --$k) {
|
||||
$sum -= $this->L[$i][$k] * $this->L[$j][$k];
|
||||
}
|
||||
if ($i == $j) {
|
||||
if ($sum >= 0) {
|
||||
$this->L[$i][$i] = sqrt($sum);
|
||||
} else {
|
||||
$this->isspd = false;
|
||||
}
|
||||
} else {
|
||||
if ($this->L[$i][$i] != 0) {
|
||||
$this->L[$j][$i] = $sum / $this->L[$i][$i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for ($k = $i + 1; $k < $this->m; ++$k) {
|
||||
$this->L[$i][$k] = 0.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Is the matrix symmetric and positive definite?
|
||||
*
|
||||
* @return bool
|
||||
*/
|
||||
public function isSPD()
|
||||
{
|
||||
return $this->isspd;
|
||||
}
|
||||
|
||||
/**
|
||||
* getL.
|
||||
*
|
||||
* Return triangular factor.
|
||||
*
|
||||
* @return Matrix Lower triangular matrix
|
||||
*/
|
||||
public function getL()
|
||||
{
|
||||
return new Matrix($this->L);
|
||||
}
|
||||
|
||||
/**
|
||||
* Solve A*X = B.
|
||||
*
|
||||
* @param $B Row-equal matrix
|
||||
*
|
||||
* @return Matrix L * L' * X = B
|
||||
*/
|
||||
public function solve(Matrix $B)
|
||||
{
|
||||
if ($B->getRowDimension() == $this->m) {
|
||||
if ($this->isspd) {
|
||||
$X = $B->getArrayCopy();
|
||||
$nx = $B->getColumnDimension();
|
||||
|
||||
for ($k = 0; $k < $this->m; ++$k) {
|
||||
for ($i = $k + 1; $i < $this->m; ++$i) {
|
||||
for ($j = 0; $j < $nx; ++$j) {
|
||||
$X[$i][$j] -= $X[$k][$j] * $this->L[$i][$k];
|
||||
}
|
||||
}
|
||||
for ($j = 0; $j < $nx; ++$j) {
|
||||
$X[$k][$j] /= $this->L[$k][$k];
|
||||
}
|
||||
}
|
||||
|
||||
for ($k = $this->m - 1; $k >= 0; --$k) {
|
||||
for ($j = 0; $j < $nx; ++$j) {
|
||||
$X[$k][$j] /= $this->L[$k][$k];
|
||||
}
|
||||
for ($i = 0; $i < $k; ++$i) {
|
||||
for ($j = 0; $j < $nx; ++$j) {
|
||||
$X[$i][$j] -= $X[$k][$j] * $this->L[$k][$i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return new Matrix($X, $this->m, $nx);
|
||||
}
|
||||
|
||||
throw new CalculationException(Matrix::MATRIX_SPD_EXCEPTION);
|
||||
}
|
||||
|
||||
throw new CalculationException(Matrix::MATRIX_DIMENSION_EXCEPTION);
|
||||
}
|
||||
}
|
||||
863
vendor/PhpSpreadsheet/Shared/JAMA/EigenvalueDecomposition.php
vendored
Normal file
863
vendor/PhpSpreadsheet/Shared/JAMA/EigenvalueDecomposition.php
vendored
Normal file
@@ -0,0 +1,863 @@
|
||||
<?php
|
||||
|
||||
namespace PhpOffice\PhpSpreadsheet\Shared\JAMA;
|
||||
|
||||
/**
|
||||
* Class to obtain eigenvalues and eigenvectors of a real matrix.
|
||||
*
|
||||
* If A is symmetric, then A = V*D*V' where the eigenvalue matrix D
|
||||
* is diagonal and the eigenvector matrix V is orthogonal (i.e.
|
||||
* A = V.times(D.times(V.transpose())) and V.times(V.transpose())
|
||||
* equals the identity matrix).
|
||||
*
|
||||
* If A is not symmetric, then the eigenvalue matrix D is block diagonal
|
||||
* with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues,
|
||||
* lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda]. The
|
||||
* columns of V represent the eigenvectors in the sense that A*V = V*D,
|
||||
* i.e. A.times(V) equals V.times(D). The matrix V may be badly
|
||||
* conditioned, or even singular, so the validity of the equation
|
||||
* A = V*D*inverse(V) depends upon V.cond().
|
||||
*
|
||||
* @author Paul Meagher
|
||||
*
|
||||
* @version 1.1
|
||||
*/
|
||||
class EigenvalueDecomposition
|
||||
{
|
||||
/**
|
||||
* Row and column dimension (square matrix).
|
||||
*
|
||||
* @var int
|
||||
*/
|
||||
private $n;
|
||||
|
||||
/**
|
||||
* Arrays for internal storage of eigenvalues.
|
||||
*
|
||||
* @var array
|
||||
*/
|
||||
private $d = [];
|
||||
|
||||
private $e = [];
|
||||
|
||||
/**
|
||||
* Array for internal storage of eigenvectors.
|
||||
*
|
||||
* @var array
|
||||
*/
|
||||
private $V = [];
|
||||
|
||||
/**
|
||||
* Array for internal storage of nonsymmetric Hessenberg form.
|
||||
*
|
||||
* @var array
|
||||
*/
|
||||
private $H = [];
|
||||
|
||||
/**
|
||||
* Working storage for nonsymmetric algorithm.
|
||||
*
|
||||
* @var array
|
||||
*/
|
||||
private $ort;
|
||||
|
||||
/**
|
||||
* Used for complex scalar division.
|
||||
*
|
||||
* @var float
|
||||
*/
|
||||
private $cdivr;
|
||||
|
||||
private $cdivi;
|
||||
|
||||
/**
|
||||
* Symmetric Householder reduction to tridiagonal form.
|
||||
*/
|
||||
private function tred2(): void
|
||||
{
|
||||
// This is derived from the Algol procedures tred2 by
|
||||
// Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
|
||||
// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
|
||||
// Fortran subroutine in EISPACK.
|
||||
$this->d = $this->V[$this->n - 1];
|
||||
// Householder reduction to tridiagonal form.
|
||||
for ($i = $this->n - 1; $i > 0; --$i) {
|
||||
$i_ = $i - 1;
|
||||
// Scale to avoid under/overflow.
|
||||
$h = $scale = 0.0;
|
||||
$scale += array_sum(array_map('abs', $this->d));
|
||||
if ($scale == 0.0) {
|
||||
$this->e[$i] = $this->d[$i_];
|
||||
$this->d = array_slice($this->V[$i_], 0, $i_);
|
||||
for ($j = 0; $j < $i; ++$j) {
|
||||
$this->V[$j][$i] = $this->V[$i][$j] = 0.0;
|
||||
}
|
||||
} else {
|
||||
// Generate Householder vector.
|
||||
for ($k = 0; $k < $i; ++$k) {
|
||||
$this->d[$k] /= $scale;
|
||||
$h += $this->d[$k] ** 2;
|
||||
}
|
||||
$f = $this->d[$i_];
|
||||
$g = sqrt($h);
|
||||
if ($f > 0) {
|
||||
$g = -$g;
|
||||
}
|
||||
$this->e[$i] = $scale * $g;
|
||||
$h = $h - $f * $g;
|
||||
$this->d[$i_] = $f - $g;
|
||||
for ($j = 0; $j < $i; ++$j) {
|
||||
$this->e[$j] = 0.0;
|
||||
}
|
||||
// Apply similarity transformation to remaining columns.
|
||||
for ($j = 0; $j < $i; ++$j) {
|
||||
$f = $this->d[$j];
|
||||
$this->V[$j][$i] = $f;
|
||||
$g = $this->e[$j] + $this->V[$j][$j] * $f;
|
||||
for ($k = $j + 1; $k <= $i_; ++$k) {
|
||||
$g += $this->V[$k][$j] * $this->d[$k];
|
||||
$this->e[$k] += $this->V[$k][$j] * $f;
|
||||
}
|
||||
$this->e[$j] = $g;
|
||||
}
|
||||
$f = 0.0;
|
||||
for ($j = 0; $j < $i; ++$j) {
|
||||
$this->e[$j] /= $h;
|
||||
$f += $this->e[$j] * $this->d[$j];
|
||||
}
|
||||
$hh = $f / (2 * $h);
|
||||
for ($j = 0; $j < $i; ++$j) {
|
||||
$this->e[$j] -= $hh * $this->d[$j];
|
||||
}
|
||||
for ($j = 0; $j < $i; ++$j) {
|
||||
$f = $this->d[$j];
|
||||
$g = $this->e[$j];
|
||||
for ($k = $j; $k <= $i_; ++$k) {
|
||||
$this->V[$k][$j] -= ($f * $this->e[$k] + $g * $this->d[$k]);
|
||||
}
|
||||
$this->d[$j] = $this->V[$i - 1][$j];
|
||||
$this->V[$i][$j] = 0.0;
|
||||
}
|
||||
}
|
||||
$this->d[$i] = $h;
|
||||
}
|
||||
|
||||
// Accumulate transformations.
|
||||
for ($i = 0; $i < $this->n - 1; ++$i) {
|
||||
$this->V[$this->n - 1][$i] = $this->V[$i][$i];
|
||||
$this->V[$i][$i] = 1.0;
|
||||
$h = $this->d[$i + 1];
|
||||
if ($h != 0.0) {
|
||||
for ($k = 0; $k <= $i; ++$k) {
|
||||
$this->d[$k] = $this->V[$k][$i + 1] / $h;
|
||||
}
|
||||
for ($j = 0; $j <= $i; ++$j) {
|
||||
$g = 0.0;
|
||||
for ($k = 0; $k <= $i; ++$k) {
|
||||
$g += $this->V[$k][$i + 1] * $this->V[$k][$j];
|
||||
}
|
||||
for ($k = 0; $k <= $i; ++$k) {
|
||||
$this->V[$k][$j] -= $g * $this->d[$k];
|
||||
}
|
||||
}
|
||||
}
|
||||
for ($k = 0; $k <= $i; ++$k) {
|
||||
$this->V[$k][$i + 1] = 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
$this->d = $this->V[$this->n - 1];
|
||||
$this->V[$this->n - 1] = array_fill(0, $j, 0.0);
|
||||
$this->V[$this->n - 1][$this->n - 1] = 1.0;
|
||||
$this->e[0] = 0.0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Symmetric tridiagonal QL algorithm.
|
||||
*
|
||||
* This is derived from the Algol procedures tql2, by
|
||||
* Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
|
||||
* Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
|
||||
* Fortran subroutine in EISPACK.
|
||||
*/
|
||||
private function tql2(): void
|
||||
{
|
||||
for ($i = 1; $i < $this->n; ++$i) {
|
||||
$this->e[$i - 1] = $this->e[$i];
|
||||
}
|
||||
$this->e[$this->n - 1] = 0.0;
|
||||
$f = 0.0;
|
||||
$tst1 = 0.0;
|
||||
$eps = 2.0 ** (-52.0);
|
||||
|
||||
for ($l = 0; $l < $this->n; ++$l) {
|
||||
// Find small subdiagonal element
|
||||
$tst1 = max($tst1, abs($this->d[$l]) + abs($this->e[$l]));
|
||||
$m = $l;
|
||||
while ($m < $this->n) {
|
||||
if (abs($this->e[$m]) <= $eps * $tst1) {
|
||||
break;
|
||||
}
|
||||
++$m;
|
||||
}
|
||||
// If m == l, $this->d[l] is an eigenvalue,
|
||||
// otherwise, iterate.
|
||||
if ($m > $l) {
|
||||
$iter = 0;
|
||||
do {
|
||||
// Could check iteration count here.
|
||||
++$iter;
|
||||
// Compute implicit shift
|
||||
$g = $this->d[$l];
|
||||
$p = ($this->d[$l + 1] - $g) / (2.0 * $this->e[$l]);
|
||||
$r = hypo($p, 1.0);
|
||||
if ($p < 0) {
|
||||
$r *= -1;
|
||||
}
|
||||
$this->d[$l] = $this->e[$l] / ($p + $r);
|
||||
$this->d[$l + 1] = $this->e[$l] * ($p + $r);
|
||||
$dl1 = $this->d[$l + 1];
|
||||
$h = $g - $this->d[$l];
|
||||
for ($i = $l + 2; $i < $this->n; ++$i) {
|
||||
$this->d[$i] -= $h;
|
||||
}
|
||||
$f += $h;
|
||||
// Implicit QL transformation.
|
||||
$p = $this->d[$m];
|
||||
$c = 1.0;
|
||||
$c2 = $c3 = $c;
|
||||
$el1 = $this->e[$l + 1];
|
||||
$s = $s2 = 0.0;
|
||||
for ($i = $m - 1; $i >= $l; --$i) {
|
||||
$c3 = $c2;
|
||||
$c2 = $c;
|
||||
$s2 = $s;
|
||||
$g = $c * $this->e[$i];
|
||||
$h = $c * $p;
|
||||
$r = hypo($p, $this->e[$i]);
|
||||
$this->e[$i + 1] = $s * $r;
|
||||
$s = $this->e[$i] / $r;
|
||||
$c = $p / $r;
|
||||
$p = $c * $this->d[$i] - $s * $g;
|
||||
$this->d[$i + 1] = $h + $s * ($c * $g + $s * $this->d[$i]);
|
||||
// Accumulate transformation.
|
||||
for ($k = 0; $k < $this->n; ++$k) {
|
||||
$h = $this->V[$k][$i + 1];
|
||||
$this->V[$k][$i + 1] = $s * $this->V[$k][$i] + $c * $h;
|
||||
$this->V[$k][$i] = $c * $this->V[$k][$i] - $s * $h;
|
||||
}
|
||||
}
|
||||
$p = -$s * $s2 * $c3 * $el1 * $this->e[$l] / $dl1;
|
||||
$this->e[$l] = $s * $p;
|
||||
$this->d[$l] = $c * $p;
|
||||
// Check for convergence.
|
||||
} while (abs($this->e[$l]) > $eps * $tst1);
|
||||
}
|
||||
$this->d[$l] = $this->d[$l] + $f;
|
||||
$this->e[$l] = 0.0;
|
||||
}
|
||||
|
||||
// Sort eigenvalues and corresponding vectors.
|
||||
for ($i = 0; $i < $this->n - 1; ++$i) {
|
||||
$k = $i;
|
||||
$p = $this->d[$i];
|
||||
for ($j = $i + 1; $j < $this->n; ++$j) {
|
||||
if ($this->d[$j] < $p) {
|
||||
$k = $j;
|
||||
$p = $this->d[$j];
|
||||
}
|
||||
}
|
||||
if ($k != $i) {
|
||||
$this->d[$k] = $this->d[$i];
|
||||
$this->d[$i] = $p;
|
||||
for ($j = 0; $j < $this->n; ++$j) {
|
||||
$p = $this->V[$j][$i];
|
||||
$this->V[$j][$i] = $this->V[$j][$k];
|
||||
$this->V[$j][$k] = $p;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Nonsymmetric reduction to Hessenberg form.
|
||||
*
|
||||
* This is derived from the Algol procedures orthes and ortran,
|
||||
* by Martin and Wilkinson, Handbook for Auto. Comp.,
|
||||
* Vol.ii-Linear Algebra, and the corresponding
|
||||
* Fortran subroutines in EISPACK.
|
||||
*/
|
||||
private function orthes(): void
|
||||
{
|
||||
$low = 0;
|
||||
$high = $this->n - 1;
|
||||
|
||||
for ($m = $low + 1; $m <= $high - 1; ++$m) {
|
||||
// Scale column.
|
||||
$scale = 0.0;
|
||||
for ($i = $m; $i <= $high; ++$i) {
|
||||
$scale = $scale + abs($this->H[$i][$m - 1]);
|
||||
}
|
||||
if ($scale != 0.0) {
|
||||
// Compute Householder transformation.
|
||||
$h = 0.0;
|
||||
for ($i = $high; $i >= $m; --$i) {
|
||||
$this->ort[$i] = $this->H[$i][$m - 1] / $scale;
|
||||
$h += $this->ort[$i] * $this->ort[$i];
|
||||
}
|
||||
$g = sqrt($h);
|
||||
if ($this->ort[$m] > 0) {
|
||||
$g *= -1;
|
||||
}
|
||||
$h -= $this->ort[$m] * $g;
|
||||
$this->ort[$m] -= $g;
|
||||
// Apply Householder similarity transformation
|
||||
// H = (I -u * u' / h) * H * (I -u * u') / h)
|
||||
for ($j = $m; $j < $this->n; ++$j) {
|
||||
$f = 0.0;
|
||||
for ($i = $high; $i >= $m; --$i) {
|
||||
$f += $this->ort[$i] * $this->H[$i][$j];
|
||||
}
|
||||
$f /= $h;
|
||||
for ($i = $m; $i <= $high; ++$i) {
|
||||
$this->H[$i][$j] -= $f * $this->ort[$i];
|
||||
}
|
||||
}
|
||||
for ($i = 0; $i <= $high; ++$i) {
|
||||
$f = 0.0;
|
||||
for ($j = $high; $j >= $m; --$j) {
|
||||
$f += $this->ort[$j] * $this->H[$i][$j];
|
||||
}
|
||||
$f = $f / $h;
|
||||
for ($j = $m; $j <= $high; ++$j) {
|
||||
$this->H[$i][$j] -= $f * $this->ort[$j];
|
||||
}
|
||||
}
|
||||
$this->ort[$m] = $scale * $this->ort[$m];
|
||||
$this->H[$m][$m - 1] = $scale * $g;
|
||||
}
|
||||
}
|
||||
|
||||
// Accumulate transformations (Algol's ortran).
|
||||
for ($i = 0; $i < $this->n; ++$i) {
|
||||
for ($j = 0; $j < $this->n; ++$j) {
|
||||
$this->V[$i][$j] = ($i == $j ? 1.0 : 0.0);
|
||||
}
|
||||
}
|
||||
for ($m = $high - 1; $m >= $low + 1; --$m) {
|
||||
if ($this->H[$m][$m - 1] != 0.0) {
|
||||
for ($i = $m + 1; $i <= $high; ++$i) {
|
||||
$this->ort[$i] = $this->H[$i][$m - 1];
|
||||
}
|
||||
for ($j = $m; $j <= $high; ++$j) {
|
||||
$g = 0.0;
|
||||
for ($i = $m; $i <= $high; ++$i) {
|
||||
$g += $this->ort[$i] * $this->V[$i][$j];
|
||||
}
|
||||
// Double division avoids possible underflow
|
||||
$g = ($g / $this->ort[$m]) / $this->H[$m][$m - 1];
|
||||
for ($i = $m; $i <= $high; ++$i) {
|
||||
$this->V[$i][$j] += $g * $this->ort[$i];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Performs complex division.
|
||||
*
|
||||
* @param mixed $xr
|
||||
* @param mixed $xi
|
||||
* @param mixed $yr
|
||||
* @param mixed $yi
|
||||
*/
|
||||
private function cdiv($xr, $xi, $yr, $yi): void
|
||||
{
|
||||
if (abs($yr) > abs($yi)) {
|
||||
$r = $yi / $yr;
|
||||
$d = $yr + $r * $yi;
|
||||
$this->cdivr = ($xr + $r * $xi) / $d;
|
||||
$this->cdivi = ($xi - $r * $xr) / $d;
|
||||
} else {
|
||||
$r = $yr / $yi;
|
||||
$d = $yi + $r * $yr;
|
||||
$this->cdivr = ($r * $xr + $xi) / $d;
|
||||
$this->cdivi = ($r * $xi - $xr) / $d;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Nonsymmetric reduction from Hessenberg to real Schur form.
|
||||
*
|
||||
* Code is derived from the Algol procedure hqr2,
|
||||
* by Martin and Wilkinson, Handbook for Auto. Comp.,
|
||||
* Vol.ii-Linear Algebra, and the corresponding
|
||||
* Fortran subroutine in EISPACK.
|
||||
*/
|
||||
private function hqr2(): void
|
||||
{
|
||||
// Initialize
|
||||
$nn = $this->n;
|
||||
$n = $nn - 1;
|
||||
$low = 0;
|
||||
$high = $nn - 1;
|
||||
$eps = 2.0 ** (-52.0);
|
||||
$exshift = 0.0;
|
||||
$p = $q = $r = $s = $z = 0;
|
||||
// Store roots isolated by balanc and compute matrix norm
|
||||
$norm = 0.0;
|
||||
|
||||
for ($i = 0; $i < $nn; ++$i) {
|
||||
if (($i < $low) || ($i > $high)) {
|
||||
$this->d[$i] = $this->H[$i][$i];
|
||||
$this->e[$i] = 0.0;
|
||||
}
|
||||
for ($j = max($i - 1, 0); $j < $nn; ++$j) {
|
||||
$norm = $norm + abs($this->H[$i][$j]);
|
||||
}
|
||||
}
|
||||
|
||||
// Outer loop over eigenvalue index
|
||||
$iter = 0;
|
||||
while ($n >= $low) {
|
||||
// Look for single small sub-diagonal element
|
||||
$l = $n;
|
||||
while ($l > $low) {
|
||||
$s = abs($this->H[$l - 1][$l - 1]) + abs($this->H[$l][$l]);
|
||||
if ($s == 0.0) {
|
||||
$s = $norm;
|
||||
}
|
||||
if (abs($this->H[$l][$l - 1]) < $eps * $s) {
|
||||
break;
|
||||
}
|
||||
--$l;
|
||||
}
|
||||
// Check for convergence
|
||||
// One root found
|
||||
if ($l == $n) {
|
||||
$this->H[$n][$n] = $this->H[$n][$n] + $exshift;
|
||||
$this->d[$n] = $this->H[$n][$n];
|
||||
$this->e[$n] = 0.0;
|
||||
--$n;
|
||||
$iter = 0;
|
||||
// Two roots found
|
||||
} elseif ($l == $n - 1) {
|
||||
$w = $this->H[$n][$n - 1] * $this->H[$n - 1][$n];
|
||||
$p = ($this->H[$n - 1][$n - 1] - $this->H[$n][$n]) / 2.0;
|
||||
$q = $p * $p + $w;
|
||||
$z = sqrt(abs($q));
|
||||
$this->H[$n][$n] = $this->H[$n][$n] + $exshift;
|
||||
$this->H[$n - 1][$n - 1] = $this->H[$n - 1][$n - 1] + $exshift;
|
||||
$x = $this->H[$n][$n];
|
||||
// Real pair
|
||||
if ($q >= 0) {
|
||||
if ($p >= 0) {
|
||||
$z = $p + $z;
|
||||
} else {
|
||||
$z = $p - $z;
|
||||
}
|
||||
$this->d[$n - 1] = $x + $z;
|
||||
$this->d[$n] = $this->d[$n - 1];
|
||||
if ($z != 0.0) {
|
||||
$this->d[$n] = $x - $w / $z;
|
||||
}
|
||||
$this->e[$n - 1] = 0.0;
|
||||
$this->e[$n] = 0.0;
|
||||
$x = $this->H[$n][$n - 1];
|
||||
$s = abs($x) + abs($z);
|
||||
$p = $x / $s;
|
||||
$q = $z / $s;
|
||||
$r = sqrt($p * $p + $q * $q);
|
||||
$p = $p / $r;
|
||||
$q = $q / $r;
|
||||
// Row modification
|
||||
for ($j = $n - 1; $j < $nn; ++$j) {
|
||||
$z = $this->H[$n - 1][$j];
|
||||
$this->H[$n - 1][$j] = $q * $z + $p * $this->H[$n][$j];
|
||||
$this->H[$n][$j] = $q * $this->H[$n][$j] - $p * $z;
|
||||
}
|
||||
// Column modification
|
||||
for ($i = 0; $i <= $n; ++$i) {
|
||||
$z = $this->H[$i][$n - 1];
|
||||
$this->H[$i][$n - 1] = $q * $z + $p * $this->H[$i][$n];
|
||||
$this->H[$i][$n] = $q * $this->H[$i][$n] - $p * $z;
|
||||
}
|
||||
// Accumulate transformations
|
||||
for ($i = $low; $i <= $high; ++$i) {
|
||||
$z = $this->V[$i][$n - 1];
|
||||
$this->V[$i][$n - 1] = $q * $z + $p * $this->V[$i][$n];
|
||||
$this->V[$i][$n] = $q * $this->V[$i][$n] - $p * $z;
|
||||
}
|
||||
// Complex pair
|
||||
} else {
|
||||
$this->d[$n - 1] = $x + $p;
|
||||
$this->d[$n] = $x + $p;
|
||||
$this->e[$n - 1] = $z;
|
||||
$this->e[$n] = -$z;
|
||||
}
|
||||
$n = $n - 2;
|
||||
$iter = 0;
|
||||
// No convergence yet
|
||||
} else {
|
||||
// Form shift
|
||||
$x = $this->H[$n][$n];
|
||||
$y = 0.0;
|
||||
$w = 0.0;
|
||||
if ($l < $n) {
|
||||
$y = $this->H[$n - 1][$n - 1];
|
||||
$w = $this->H[$n][$n - 1] * $this->H[$n - 1][$n];
|
||||
}
|
||||
// Wilkinson's original ad hoc shift
|
||||
if ($iter == 10) {
|
||||
$exshift += $x;
|
||||
for ($i = $low; $i <= $n; ++$i) {
|
||||
$this->H[$i][$i] -= $x;
|
||||
}
|
||||
$s = abs($this->H[$n][$n - 1]) + abs($this->H[$n - 1][$n - 2]);
|
||||
$x = $y = 0.75 * $s;
|
||||
$w = -0.4375 * $s * $s;
|
||||
}
|
||||
// MATLAB's new ad hoc shift
|
||||
if ($iter == 30) {
|
||||
$s = ($y - $x) / 2.0;
|
||||
$s = $s * $s + $w;
|
||||
if ($s > 0) {
|
||||
$s = sqrt($s);
|
||||
if ($y < $x) {
|
||||
$s = -$s;
|
||||
}
|
||||
$s = $x - $w / (($y - $x) / 2.0 + $s);
|
||||
for ($i = $low; $i <= $n; ++$i) {
|
||||
$this->H[$i][$i] -= $s;
|
||||
}
|
||||
$exshift += $s;
|
||||
$x = $y = $w = 0.964;
|
||||
}
|
||||
}
|
||||
// Could check iteration count here.
|
||||
$iter = $iter + 1;
|
||||
// Look for two consecutive small sub-diagonal elements
|
||||
$m = $n - 2;
|
||||
while ($m >= $l) {
|
||||
$z = $this->H[$m][$m];
|
||||
$r = $x - $z;
|
||||
$s = $y - $z;
|
||||
$p = ($r * $s - $w) / $this->H[$m + 1][$m] + $this->H[$m][$m + 1];
|
||||
$q = $this->H[$m + 1][$m + 1] - $z - $r - $s;
|
||||
$r = $this->H[$m + 2][$m + 1];
|
||||
$s = abs($p) + abs($q) + abs($r);
|
||||
$p = $p / $s;
|
||||
$q = $q / $s;
|
||||
$r = $r / $s;
|
||||
if ($m == $l) {
|
||||
break;
|
||||
}
|
||||
if (
|
||||
abs($this->H[$m][$m - 1]) * (abs($q) + abs($r)) <
|
||||
$eps * (abs($p) * (abs($this->H[$m - 1][$m - 1]) + abs($z) + abs($this->H[$m + 1][$m + 1])))
|
||||
) {
|
||||
break;
|
||||
}
|
||||
--$m;
|
||||
}
|
||||
for ($i = $m + 2; $i <= $n; ++$i) {
|
||||
$this->H[$i][$i - 2] = 0.0;
|
||||
if ($i > $m + 2) {
|
||||
$this->H[$i][$i - 3] = 0.0;
|
||||
}
|
||||
}
|
||||
// Double QR step involving rows l:n and columns m:n
|
||||
for ($k = $m; $k <= $n - 1; ++$k) {
|
||||
$notlast = ($k != $n - 1);
|
||||
if ($k != $m) {
|
||||
$p = $this->H[$k][$k - 1];
|
||||
$q = $this->H[$k + 1][$k - 1];
|
||||
$r = ($notlast ? $this->H[$k + 2][$k - 1] : 0.0);
|
||||
$x = abs($p) + abs($q) + abs($r);
|
||||
if ($x != 0.0) {
|
||||
$p = $p / $x;
|
||||
$q = $q / $x;
|
||||
$r = $r / $x;
|
||||
}
|
||||
}
|
||||
if ($x == 0.0) {
|
||||
break;
|
||||
}
|
||||
$s = sqrt($p * $p + $q * $q + $r * $r);
|
||||
if ($p < 0) {
|
||||
$s = -$s;
|
||||
}
|
||||
if ($s != 0) {
|
||||
if ($k != $m) {
|
||||
$this->H[$k][$k - 1] = -$s * $x;
|
||||
} elseif ($l != $m) {
|
||||
$this->H[$k][$k - 1] = -$this->H[$k][$k - 1];
|
||||
}
|
||||
$p = $p + $s;
|
||||
$x = $p / $s;
|
||||
$y = $q / $s;
|
||||
$z = $r / $s;
|
||||
$q = $q / $p;
|
||||
$r = $r / $p;
|
||||
// Row modification
|
||||
for ($j = $k; $j < $nn; ++$j) {
|
||||
$p = $this->H[$k][$j] + $q * $this->H[$k + 1][$j];
|
||||
if ($notlast) {
|
||||
$p = $p + $r * $this->H[$k + 2][$j];
|
||||
$this->H[$k + 2][$j] = $this->H[$k + 2][$j] - $p * $z;
|
||||
}
|
||||
$this->H[$k][$j] = $this->H[$k][$j] - $p * $x;
|
||||
$this->H[$k + 1][$j] = $this->H[$k + 1][$j] - $p * $y;
|
||||
}
|
||||
// Column modification
|
||||
$iMax = min($n, $k + 3);
|
||||
for ($i = 0; $i <= $iMax; ++$i) {
|
||||
$p = $x * $this->H[$i][$k] + $y * $this->H[$i][$k + 1];
|
||||
if ($notlast) {
|
||||
$p = $p + $z * $this->H[$i][$k + 2];
|
||||
$this->H[$i][$k + 2] = $this->H[$i][$k + 2] - $p * $r;
|
||||
}
|
||||
$this->H[$i][$k] = $this->H[$i][$k] - $p;
|
||||
$this->H[$i][$k + 1] = $this->H[$i][$k + 1] - $p * $q;
|
||||
}
|
||||
// Accumulate transformations
|
||||
for ($i = $low; $i <= $high; ++$i) {
|
||||
$p = $x * $this->V[$i][$k] + $y * $this->V[$i][$k + 1];
|
||||
if ($notlast) {
|
||||
$p = $p + $z * $this->V[$i][$k + 2];
|
||||
$this->V[$i][$k + 2] = $this->V[$i][$k + 2] - $p * $r;
|
||||
}
|
||||
$this->V[$i][$k] = $this->V[$i][$k] - $p;
|
||||
$this->V[$i][$k + 1] = $this->V[$i][$k + 1] - $p * $q;
|
||||
}
|
||||
} // ($s != 0)
|
||||
} // k loop
|
||||
} // check convergence
|
||||
} // while ($n >= $low)
|
||||
|
||||
// Backsubstitute to find vectors of upper triangular form
|
||||
if ($norm == 0.0) {
|
||||
return;
|
||||
}
|
||||
|
||||
for ($n = $nn - 1; $n >= 0; --$n) {
|
||||
$p = $this->d[$n];
|
||||
$q = $this->e[$n];
|
||||
// Real vector
|
||||
if ($q == 0) {
|
||||
$l = $n;
|
||||
$this->H[$n][$n] = 1.0;
|
||||
for ($i = $n - 1; $i >= 0; --$i) {
|
||||
$w = $this->H[$i][$i] - $p;
|
||||
$r = 0.0;
|
||||
for ($j = $l; $j <= $n; ++$j) {
|
||||
$r = $r + $this->H[$i][$j] * $this->H[$j][$n];
|
||||
}
|
||||
if ($this->e[$i] < 0.0) {
|
||||
$z = $w;
|
||||
$s = $r;
|
||||
} else {
|
||||
$l = $i;
|
||||
if ($this->e[$i] == 0.0) {
|
||||
if ($w != 0.0) {
|
||||
$this->H[$i][$n] = -$r / $w;
|
||||
} else {
|
||||
$this->H[$i][$n] = -$r / ($eps * $norm);
|
||||
}
|
||||
// Solve real equations
|
||||
} else {
|
||||
$x = $this->H[$i][$i + 1];
|
||||
$y = $this->H[$i + 1][$i];
|
||||
$q = ($this->d[$i] - $p) * ($this->d[$i] - $p) + $this->e[$i] * $this->e[$i];
|
||||
$t = ($x * $s - $z * $r) / $q;
|
||||
$this->H[$i][$n] = $t;
|
||||
if (abs($x) > abs($z)) {
|
||||
$this->H[$i + 1][$n] = (-$r - $w * $t) / $x;
|
||||
} else {
|
||||
$this->H[$i + 1][$n] = (-$s - $y * $t) / $z;
|
||||
}
|
||||
}
|
||||
// Overflow control
|
||||
$t = abs($this->H[$i][$n]);
|
||||
if (($eps * $t) * $t > 1) {
|
||||
for ($j = $i; $j <= $n; ++$j) {
|
||||
$this->H[$j][$n] = $this->H[$j][$n] / $t;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// Complex vector
|
||||
} elseif ($q < 0) {
|
||||
$l = $n - 1;
|
||||
// Last vector component imaginary so matrix is triangular
|
||||
if (abs($this->H[$n][$n - 1]) > abs($this->H[$n - 1][$n])) {
|
||||
$this->H[$n - 1][$n - 1] = $q / $this->H[$n][$n - 1];
|
||||
$this->H[$n - 1][$n] = -($this->H[$n][$n] - $p) / $this->H[$n][$n - 1];
|
||||
} else {
|
||||
$this->cdiv(0.0, -$this->H[$n - 1][$n], $this->H[$n - 1][$n - 1] - $p, $q);
|
||||
$this->H[$n - 1][$n - 1] = $this->cdivr;
|
||||
$this->H[$n - 1][$n] = $this->cdivi;
|
||||
}
|
||||
$this->H[$n][$n - 1] = 0.0;
|
||||
$this->H[$n][$n] = 1.0;
|
||||
for ($i = $n - 2; $i >= 0; --$i) {
|
||||
// double ra,sa,vr,vi;
|
||||
$ra = 0.0;
|
||||
$sa = 0.0;
|
||||
for ($j = $l; $j <= $n; ++$j) {
|
||||
$ra = $ra + $this->H[$i][$j] * $this->H[$j][$n - 1];
|
||||
$sa = $sa + $this->H[$i][$j] * $this->H[$j][$n];
|
||||
}
|
||||
$w = $this->H[$i][$i] - $p;
|
||||
if ($this->e[$i] < 0.0) {
|
||||
$z = $w;
|
||||
$r = $ra;
|
||||
$s = $sa;
|
||||
} else {
|
||||
$l = $i;
|
||||
if ($this->e[$i] == 0) {
|
||||
$this->cdiv(-$ra, -$sa, $w, $q);
|
||||
$this->H[$i][$n - 1] = $this->cdivr;
|
||||
$this->H[$i][$n] = $this->cdivi;
|
||||
} else {
|
||||
// Solve complex equations
|
||||
$x = $this->H[$i][$i + 1];
|
||||
$y = $this->H[$i + 1][$i];
|
||||
$vr = ($this->d[$i] - $p) * ($this->d[$i] - $p) + $this->e[$i] * $this->e[$i] - $q * $q;
|
||||
$vi = ($this->d[$i] - $p) * 2.0 * $q;
|
||||
if ($vr == 0.0 & $vi == 0.0) {
|
||||
$vr = $eps * $norm * (abs($w) + abs($q) + abs($x) + abs($y) + abs($z));
|
||||
}
|
||||
$this->cdiv($x * $r - $z * $ra + $q * $sa, $x * $s - $z * $sa - $q * $ra, $vr, $vi);
|
||||
$this->H[$i][$n - 1] = $this->cdivr;
|
||||
$this->H[$i][$n] = $this->cdivi;
|
||||
if (abs($x) > (abs($z) + abs($q))) {
|
||||
$this->H[$i + 1][$n - 1] = (-$ra - $w * $this->H[$i][$n - 1] + $q * $this->H[$i][$n]) / $x;
|
||||
$this->H[$i + 1][$n] = (-$sa - $w * $this->H[$i][$n] - $q * $this->H[$i][$n - 1]) / $x;
|
||||
} else {
|
||||
$this->cdiv(-$r - $y * $this->H[$i][$n - 1], -$s - $y * $this->H[$i][$n], $z, $q);
|
||||
$this->H[$i + 1][$n - 1] = $this->cdivr;
|
||||
$this->H[$i + 1][$n] = $this->cdivi;
|
||||
}
|
||||
}
|
||||
// Overflow control
|
||||
$t = max(abs($this->H[$i][$n - 1]), abs($this->H[$i][$n]));
|
||||
if (($eps * $t) * $t > 1) {
|
||||
for ($j = $i; $j <= $n; ++$j) {
|
||||
$this->H[$j][$n - 1] = $this->H[$j][$n - 1] / $t;
|
||||
$this->H[$j][$n] = $this->H[$j][$n] / $t;
|
||||
}
|
||||
}
|
||||
} // end else
|
||||
} // end for
|
||||
} // end else for complex case
|
||||
} // end for
|
||||
|
||||
// Vectors of isolated roots
|
||||
for ($i = 0; $i < $nn; ++$i) {
|
||||
if ($i < $low | $i > $high) {
|
||||
for ($j = $i; $j < $nn; ++$j) {
|
||||
$this->V[$i][$j] = $this->H[$i][$j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Back transformation to get eigenvectors of original matrix
|
||||
for ($j = $nn - 1; $j >= $low; --$j) {
|
||||
for ($i = $low; $i <= $high; ++$i) {
|
||||
$z = 0.0;
|
||||
$kMax = min($j, $high);
|
||||
for ($k = $low; $k <= $kMax; ++$k) {
|
||||
$z = $z + $this->V[$i][$k] * $this->H[$k][$j];
|
||||
}
|
||||
$this->V[$i][$j] = $z;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// end hqr2
|
||||
|
||||
/**
|
||||
* Constructor: Check for symmetry, then construct the eigenvalue decomposition.
|
||||
*
|
||||
* @param mixed $Arg A Square matrix
|
||||
*/
|
||||
public function __construct($Arg)
|
||||
{
|
||||
$this->A = $Arg->getArray();
|
||||
$this->n = $Arg->getColumnDimension();
|
||||
|
||||
$issymmetric = true;
|
||||
for ($j = 0; ($j < $this->n) & $issymmetric; ++$j) {
|
||||
for ($i = 0; ($i < $this->n) & $issymmetric; ++$i) {
|
||||
$issymmetric = ($this->A[$i][$j] == $this->A[$j][$i]);
|
||||
}
|
||||
}
|
||||
|
||||
if ($issymmetric) {
|
||||
$this->V = $this->A;
|
||||
// Tridiagonalize.
|
||||
$this->tred2();
|
||||
// Diagonalize.
|
||||
$this->tql2();
|
||||
} else {
|
||||
$this->H = $this->A;
|
||||
$this->ort = [];
|
||||
// Reduce to Hessenberg form.
|
||||
$this->orthes();
|
||||
// Reduce Hessenberg to real Schur form.
|
||||
$this->hqr2();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the eigenvector matrix.
|
||||
*
|
||||
* @return Matrix V
|
||||
*/
|
||||
public function getV()
|
||||
{
|
||||
return new Matrix($this->V, $this->n, $this->n);
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the real parts of the eigenvalues.
|
||||
*
|
||||
* @return array real(diag(D))
|
||||
*/
|
||||
public function getRealEigenvalues()
|
||||
{
|
||||
return $this->d;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the imaginary parts of the eigenvalues.
|
||||
*
|
||||
* @return array imag(diag(D))
|
||||
*/
|
||||
public function getImagEigenvalues()
|
||||
{
|
||||
return $this->e;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the block diagonal eigenvalue matrix.
|
||||
*
|
||||
* @return Matrix D
|
||||
*/
|
||||
public function getD()
|
||||
{
|
||||
for ($i = 0; $i < $this->n; ++$i) {
|
||||
$D[$i] = array_fill(0, $this->n, 0.0);
|
||||
$D[$i][$i] = $this->d[$i];
|
||||
if ($this->e[$i] == 0) {
|
||||
continue;
|
||||
}
|
||||
$o = ($this->e[$i] > 0) ? $i + 1 : $i - 1;
|
||||
$D[$i][$o] = $this->e[$i];
|
||||
}
|
||||
|
||||
return new Matrix($D);
|
||||
}
|
||||
}
|
||||
282
vendor/PhpSpreadsheet/Shared/JAMA/LUDecomposition.php
vendored
Normal file
282
vendor/PhpSpreadsheet/Shared/JAMA/LUDecomposition.php
vendored
Normal file
@@ -0,0 +1,282 @@
|
||||
<?php
|
||||
|
||||
namespace PhpOffice\PhpSpreadsheet\Shared\JAMA;
|
||||
|
||||
use PhpOffice\PhpSpreadsheet\Calculation\Exception as CalculationException;
|
||||
|
||||
/**
|
||||
* For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n
|
||||
* unit lower triangular matrix L, an n-by-n upper triangular matrix U,
|
||||
* and a permutation vector piv of length m so that A(piv,:) = L*U.
|
||||
* If m < n, then L is m-by-m and U is m-by-n.
|
||||
*
|
||||
* The LU decompostion with pivoting always exists, even if the matrix is
|
||||
* singular, so the constructor will never fail. The primary use of the
|
||||
* LU decomposition is in the solution of square systems of simultaneous
|
||||
* linear equations. This will fail if isNonsingular() returns false.
|
||||
*
|
||||
* @author Paul Meagher
|
||||
* @author Bartosz Matosiuk
|
||||
* @author Michael Bommarito
|
||||
*
|
||||
* @version 1.1
|
||||
*/
|
||||
class LUDecomposition
|
||||
{
|
||||
const MATRIX_SINGULAR_EXCEPTION = 'Can only perform operation on singular matrix.';
|
||||
const MATRIX_SQUARE_EXCEPTION = 'Mismatched Row dimension';
|
||||
|
||||
/**
|
||||
* Decomposition storage.
|
||||
*
|
||||
* @var array
|
||||
*/
|
||||
private $LU = [];
|
||||
|
||||
/**
|
||||
* Row dimension.
|
||||
*
|
||||
* @var int
|
||||
*/
|
||||
private $m;
|
||||
|
||||
/**
|
||||
* Column dimension.
|
||||
*
|
||||
* @var int
|
||||
*/
|
||||
private $n;
|
||||
|
||||
/**
|
||||
* Pivot sign.
|
||||
*
|
||||
* @var int
|
||||
*/
|
||||
private $pivsign;
|
||||
|
||||
/**
|
||||
* Internal storage of pivot vector.
|
||||
*
|
||||
* @var array
|
||||
*/
|
||||
private $piv = [];
|
||||
|
||||
/**
|
||||
* LU Decomposition constructor.
|
||||
*
|
||||
* @param Matrix $A Rectangular matrix
|
||||
*/
|
||||
public function __construct($A)
|
||||
{
|
||||
if ($A instanceof Matrix) {
|
||||
// Use a "left-looking", dot-product, Crout/Doolittle algorithm.
|
||||
$this->LU = $A->getArray();
|
||||
$this->m = $A->getRowDimension();
|
||||
$this->n = $A->getColumnDimension();
|
||||
for ($i = 0; $i < $this->m; ++$i) {
|
||||
$this->piv[$i] = $i;
|
||||
}
|
||||
$this->pivsign = 1;
|
||||
$LUrowi = $LUcolj = [];
|
||||
|
||||
// Outer loop.
|
||||
for ($j = 0; $j < $this->n; ++$j) {
|
||||
// Make a copy of the j-th column to localize references.
|
||||
for ($i = 0; $i < $this->m; ++$i) {
|
||||
$LUcolj[$i] = &$this->LU[$i][$j];
|
||||
}
|
||||
// Apply previous transformations.
|
||||
for ($i = 0; $i < $this->m; ++$i) {
|
||||
$LUrowi = $this->LU[$i];
|
||||
// Most of the time is spent in the following dot product.
|
||||
$kmax = min($i, $j);
|
||||
$s = 0.0;
|
||||
for ($k = 0; $k < $kmax; ++$k) {
|
||||
$s += $LUrowi[$k] * $LUcolj[$k];
|
||||
}
|
||||
$LUrowi[$j] = $LUcolj[$i] -= $s;
|
||||
}
|
||||
// Find pivot and exchange if necessary.
|
||||
$p = $j;
|
||||
for ($i = $j + 1; $i < $this->m; ++$i) {
|
||||
if (abs($LUcolj[$i]) > abs($LUcolj[$p])) {
|
||||
$p = $i;
|
||||
}
|
||||
}
|
||||
if ($p != $j) {
|
||||
for ($k = 0; $k < $this->n; ++$k) {
|
||||
$t = $this->LU[$p][$k];
|
||||
$this->LU[$p][$k] = $this->LU[$j][$k];
|
||||
$this->LU[$j][$k] = $t;
|
||||
}
|
||||
$k = $this->piv[$p];
|
||||
$this->piv[$p] = $this->piv[$j];
|
||||
$this->piv[$j] = $k;
|
||||
$this->pivsign = $this->pivsign * -1;
|
||||
}
|
||||
// Compute multipliers.
|
||||
if (($j < $this->m) && ($this->LU[$j][$j] != 0.0)) {
|
||||
for ($i = $j + 1; $i < $this->m; ++$i) {
|
||||
$this->LU[$i][$j] /= $this->LU[$j][$j];
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
throw new CalculationException(Matrix::ARGUMENT_TYPE_EXCEPTION);
|
||||
}
|
||||
}
|
||||
|
||||
// function __construct()
|
||||
|
||||
/**
|
||||
* Get lower triangular factor.
|
||||
*
|
||||
* @return Matrix Lower triangular factor
|
||||
*/
|
||||
public function getL()
|
||||
{
|
||||
for ($i = 0; $i < $this->m; ++$i) {
|
||||
for ($j = 0; $j < $this->n; ++$j) {
|
||||
if ($i > $j) {
|
||||
$L[$i][$j] = $this->LU[$i][$j];
|
||||
} elseif ($i == $j) {
|
||||
$L[$i][$j] = 1.0;
|
||||
} else {
|
||||
$L[$i][$j] = 0.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return new Matrix($L);
|
||||
}
|
||||
|
||||
// function getL()
|
||||
|
||||
/**
|
||||
* Get upper triangular factor.
|
||||
*
|
||||
* @return Matrix Upper triangular factor
|
||||
*/
|
||||
public function getU()
|
||||
{
|
||||
for ($i = 0; $i < $this->n; ++$i) {
|
||||
for ($j = 0; $j < $this->n; ++$j) {
|
||||
if ($i <= $j) {
|
||||
$U[$i][$j] = $this->LU[$i][$j];
|
||||
} else {
|
||||
$U[$i][$j] = 0.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return new Matrix($U);
|
||||
}
|
||||
|
||||
// function getU()
|
||||
|
||||
/**
|
||||
* Return pivot permutation vector.
|
||||
*
|
||||
* @return array Pivot vector
|
||||
*/
|
||||
public function getPivot()
|
||||
{
|
||||
return $this->piv;
|
||||
}
|
||||
|
||||
// function getPivot()
|
||||
|
||||
/**
|
||||
* Alias for getPivot.
|
||||
*
|
||||
* @see getPivot
|
||||
*/
|
||||
public function getDoublePivot()
|
||||
{
|
||||
return $this->getPivot();
|
||||
}
|
||||
|
||||
// function getDoublePivot()
|
||||
|
||||
/**
|
||||
* Is the matrix nonsingular?
|
||||
*
|
||||
* @return bool true if U, and hence A, is nonsingular
|
||||
*/
|
||||
public function isNonsingular()
|
||||
{
|
||||
for ($j = 0; $j < $this->n; ++$j) {
|
||||
if ($this->LU[$j][$j] == 0) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// function isNonsingular()
|
||||
|
||||
/**
|
||||
* Count determinants.
|
||||
*
|
||||
* @return array d matrix deterninat
|
||||
*/
|
||||
public function det()
|
||||
{
|
||||
if ($this->m == $this->n) {
|
||||
$d = $this->pivsign;
|
||||
for ($j = 0; $j < $this->n; ++$j) {
|
||||
$d *= $this->LU[$j][$j];
|
||||
}
|
||||
|
||||
return $d;
|
||||
}
|
||||
|
||||
throw new CalculationException(Matrix::MATRIX_DIMENSION_EXCEPTION);
|
||||
}
|
||||
|
||||
// function det()
|
||||
|
||||
/**
|
||||
* Solve A*X = B.
|
||||
*
|
||||
* @param mixed $B a Matrix with as many rows as A and any number of columns
|
||||
*
|
||||
* @return Matrix X so that L*U*X = B(piv,:)
|
||||
*/
|
||||
public function solve($B)
|
||||
{
|
||||
if ($B->getRowDimension() == $this->m) {
|
||||
if ($this->isNonsingular()) {
|
||||
// Copy right hand side with pivoting
|
||||
$nx = $B->getColumnDimension();
|
||||
$X = $B->getMatrix($this->piv, 0, $nx - 1);
|
||||
// Solve L*Y = B(piv,:)
|
||||
for ($k = 0; $k < $this->n; ++$k) {
|
||||
for ($i = $k + 1; $i < $this->n; ++$i) {
|
||||
for ($j = 0; $j < $nx; ++$j) {
|
||||
$X->A[$i][$j] -= $X->A[$k][$j] * $this->LU[$i][$k];
|
||||
}
|
||||
}
|
||||
}
|
||||
// Solve U*X = Y;
|
||||
for ($k = $this->n - 1; $k >= 0; --$k) {
|
||||
for ($j = 0; $j < $nx; ++$j) {
|
||||
$X->A[$k][$j] /= $this->LU[$k][$k];
|
||||
}
|
||||
for ($i = 0; $i < $k; ++$i) {
|
||||
for ($j = 0; $j < $nx; ++$j) {
|
||||
$X->A[$i][$j] -= $X->A[$k][$j] * $this->LU[$i][$k];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return $X;
|
||||
}
|
||||
|
||||
throw new CalculationException(self::MATRIX_SINGULAR_EXCEPTION);
|
||||
}
|
||||
|
||||
throw new CalculationException(self::MATRIX_SQUARE_EXCEPTION);
|
||||
}
|
||||
}
|
||||
1202
vendor/PhpSpreadsheet/Shared/JAMA/Matrix.php
vendored
Normal file
1202
vendor/PhpSpreadsheet/Shared/JAMA/Matrix.php
vendored
Normal file
File diff suppressed because it is too large
Load Diff
249
vendor/PhpSpreadsheet/Shared/JAMA/QRDecomposition.php
vendored
Normal file
249
vendor/PhpSpreadsheet/Shared/JAMA/QRDecomposition.php
vendored
Normal file
@@ -0,0 +1,249 @@
|
||||
<?php
|
||||
|
||||
namespace PhpOffice\PhpSpreadsheet\Shared\JAMA;
|
||||
|
||||
use PhpOffice\PhpSpreadsheet\Calculation\Exception as CalculationException;
|
||||
|
||||
/**
|
||||
* For an m-by-n matrix A with m >= n, the QR decomposition is an m-by-n
|
||||
* orthogonal matrix Q and an n-by-n upper triangular matrix R so that
|
||||
* A = Q*R.
|
||||
*
|
||||
* The QR decompostion always exists, even if the matrix does not have
|
||||
* full rank, so the constructor will never fail. The primary use of the
|
||||
* QR decomposition is in the least squares solution of nonsquare systems
|
||||
* of simultaneous linear equations. This will fail if isFullRank()
|
||||
* returns false.
|
||||
*
|
||||
* @author Paul Meagher
|
||||
*
|
||||
* @version 1.1
|
||||
*/
|
||||
class QRDecomposition
|
||||
{
|
||||
const MATRIX_RANK_EXCEPTION = 'Can only perform operation on full-rank matrix.';
|
||||
|
||||
/**
|
||||
* Array for internal storage of decomposition.
|
||||
*
|
||||
* @var array
|
||||
*/
|
||||
private $QR = [];
|
||||
|
||||
/**
|
||||
* Row dimension.
|
||||
*
|
||||
* @var int
|
||||
*/
|
||||
private $m;
|
||||
|
||||
/**
|
||||
* Column dimension.
|
||||
*
|
||||
* @var int
|
||||
*/
|
||||
private $n;
|
||||
|
||||
/**
|
||||
* Array for internal storage of diagonal of R.
|
||||
*
|
||||
* @var array
|
||||
*/
|
||||
private $Rdiag = [];
|
||||
|
||||
/**
|
||||
* QR Decomposition computed by Householder reflections.
|
||||
*
|
||||
* @param matrix $A Rectangular matrix
|
||||
*/
|
||||
public function __construct($A)
|
||||
{
|
||||
if ($A instanceof Matrix) {
|
||||
// Initialize.
|
||||
$this->QR = $A->getArray();
|
||||
$this->m = $A->getRowDimension();
|
||||
$this->n = $A->getColumnDimension();
|
||||
// Main loop.
|
||||
for ($k = 0; $k < $this->n; ++$k) {
|
||||
// Compute 2-norm of k-th column without under/overflow.
|
||||
$nrm = 0.0;
|
||||
for ($i = $k; $i < $this->m; ++$i) {
|
||||
$nrm = hypo($nrm, $this->QR[$i][$k]);
|
||||
}
|
||||
if ($nrm != 0.0) {
|
||||
// Form k-th Householder vector.
|
||||
if ($this->QR[$k][$k] < 0) {
|
||||
$nrm = -$nrm;
|
||||
}
|
||||
for ($i = $k; $i < $this->m; ++$i) {
|
||||
$this->QR[$i][$k] /= $nrm;
|
||||
}
|
||||
$this->QR[$k][$k] += 1.0;
|
||||
// Apply transformation to remaining columns.
|
||||
for ($j = $k + 1; $j < $this->n; ++$j) {
|
||||
$s = 0.0;
|
||||
for ($i = $k; $i < $this->m; ++$i) {
|
||||
$s += $this->QR[$i][$k] * $this->QR[$i][$j];
|
||||
}
|
||||
$s = -$s / $this->QR[$k][$k];
|
||||
for ($i = $k; $i < $this->m; ++$i) {
|
||||
$this->QR[$i][$j] += $s * $this->QR[$i][$k];
|
||||
}
|
||||
}
|
||||
}
|
||||
$this->Rdiag[$k] = -$nrm;
|
||||
}
|
||||
} else {
|
||||
throw new CalculationException(Matrix::ARGUMENT_TYPE_EXCEPTION);
|
||||
}
|
||||
}
|
||||
|
||||
// function __construct()
|
||||
|
||||
/**
|
||||
* Is the matrix full rank?
|
||||
*
|
||||
* @return bool true if R, and hence A, has full rank, else false
|
||||
*/
|
||||
public function isFullRank()
|
||||
{
|
||||
for ($j = 0; $j < $this->n; ++$j) {
|
||||
if ($this->Rdiag[$j] == 0) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// function isFullRank()
|
||||
|
||||
/**
|
||||
* Return the Householder vectors.
|
||||
*
|
||||
* @return Matrix Lower trapezoidal matrix whose columns define the reflections
|
||||
*/
|
||||
public function getH()
|
||||
{
|
||||
$H = [];
|
||||
for ($i = 0; $i < $this->m; ++$i) {
|
||||
for ($j = 0; $j < $this->n; ++$j) {
|
||||
if ($i >= $j) {
|
||||
$H[$i][$j] = $this->QR[$i][$j];
|
||||
} else {
|
||||
$H[$i][$j] = 0.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return new Matrix($H);
|
||||
}
|
||||
|
||||
// function getH()
|
||||
|
||||
/**
|
||||
* Return the upper triangular factor.
|
||||
*
|
||||
* @return Matrix upper triangular factor
|
||||
*/
|
||||
public function getR()
|
||||
{
|
||||
$R = [];
|
||||
for ($i = 0; $i < $this->n; ++$i) {
|
||||
for ($j = 0; $j < $this->n; ++$j) {
|
||||
if ($i < $j) {
|
||||
$R[$i][$j] = $this->QR[$i][$j];
|
||||
} elseif ($i == $j) {
|
||||
$R[$i][$j] = $this->Rdiag[$i];
|
||||
} else {
|
||||
$R[$i][$j] = 0.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return new Matrix($R);
|
||||
}
|
||||
|
||||
// function getR()
|
||||
|
||||
/**
|
||||
* Generate and return the (economy-sized) orthogonal factor.
|
||||
*
|
||||
* @return Matrix orthogonal factor
|
||||
*/
|
||||
public function getQ()
|
||||
{
|
||||
$Q = [];
|
||||
for ($k = $this->n - 1; $k >= 0; --$k) {
|
||||
for ($i = 0; $i < $this->m; ++$i) {
|
||||
$Q[$i][$k] = 0.0;
|
||||
}
|
||||
$Q[$k][$k] = 1.0;
|
||||
for ($j = $k; $j < $this->n; ++$j) {
|
||||
if ($this->QR[$k][$k] != 0) {
|
||||
$s = 0.0;
|
||||
for ($i = $k; $i < $this->m; ++$i) {
|
||||
$s += $this->QR[$i][$k] * $Q[$i][$j];
|
||||
}
|
||||
$s = -$s / $this->QR[$k][$k];
|
||||
for ($i = $k; $i < $this->m; ++$i) {
|
||||
$Q[$i][$j] += $s * $this->QR[$i][$k];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return new Matrix($Q);
|
||||
}
|
||||
|
||||
// function getQ()
|
||||
|
||||
/**
|
||||
* Least squares solution of A*X = B.
|
||||
*
|
||||
* @param Matrix $B a Matrix with as many rows as A and any number of columns
|
||||
*
|
||||
* @return Matrix matrix that minimizes the two norm of Q*R*X-B
|
||||
*/
|
||||
public function solve($B)
|
||||
{
|
||||
if ($B->getRowDimension() == $this->m) {
|
||||
if ($this->isFullRank()) {
|
||||
// Copy right hand side
|
||||
$nx = $B->getColumnDimension();
|
||||
$X = $B->getArrayCopy();
|
||||
// Compute Y = transpose(Q)*B
|
||||
for ($k = 0; $k < $this->n; ++$k) {
|
||||
for ($j = 0; $j < $nx; ++$j) {
|
||||
$s = 0.0;
|
||||
for ($i = $k; $i < $this->m; ++$i) {
|
||||
$s += $this->QR[$i][$k] * $X[$i][$j];
|
||||
}
|
||||
$s = -$s / $this->QR[$k][$k];
|
||||
for ($i = $k; $i < $this->m; ++$i) {
|
||||
$X[$i][$j] += $s * $this->QR[$i][$k];
|
||||
}
|
||||
}
|
||||
}
|
||||
// Solve R*X = Y;
|
||||
for ($k = $this->n - 1; $k >= 0; --$k) {
|
||||
for ($j = 0; $j < $nx; ++$j) {
|
||||
$X[$k][$j] /= $this->Rdiag[$k];
|
||||
}
|
||||
for ($i = 0; $i < $k; ++$i) {
|
||||
for ($j = 0; $j < $nx; ++$j) {
|
||||
$X[$i][$j] -= $X[$k][$j] * $this->QR[$i][$k];
|
||||
}
|
||||
}
|
||||
}
|
||||
$X = new Matrix($X);
|
||||
|
||||
return $X->getMatrix(0, $this->n - 1, 0, $nx);
|
||||
}
|
||||
|
||||
throw new CalculationException(self::MATRIX_RANK_EXCEPTION);
|
||||
}
|
||||
|
||||
throw new CalculationException(Matrix::MATRIX_DIMENSION_EXCEPTION);
|
||||
}
|
||||
}
|
||||
528
vendor/PhpSpreadsheet/Shared/JAMA/SingularValueDecomposition.php
vendored
Normal file
528
vendor/PhpSpreadsheet/Shared/JAMA/SingularValueDecomposition.php
vendored
Normal file
@@ -0,0 +1,528 @@
|
||||
<?php
|
||||
|
||||
namespace PhpOffice\PhpSpreadsheet\Shared\JAMA;
|
||||
|
||||
/**
|
||||
* For an m-by-n matrix A with m >= n, the singular value decomposition is
|
||||
* an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and
|
||||
* an n-by-n orthogonal matrix V so that A = U*S*V'.
|
||||
*
|
||||
* The singular values, sigma[$k] = S[$k][$k], are ordered so that
|
||||
* sigma[0] >= sigma[1] >= ... >= sigma[n-1].
|
||||
*
|
||||
* The singular value decompostion always exists, so the constructor will
|
||||
* never fail. The matrix condition number and the effective numerical
|
||||
* rank can be computed from this decomposition.
|
||||
*
|
||||
* @author Paul Meagher
|
||||
*
|
||||
* @version 1.1
|
||||
*/
|
||||
class SingularValueDecomposition
|
||||
{
|
||||
/**
|
||||
* Internal storage of U.
|
||||
*
|
||||
* @var array
|
||||
*/
|
||||
private $U = [];
|
||||
|
||||
/**
|
||||
* Internal storage of V.
|
||||
*
|
||||
* @var array
|
||||
*/
|
||||
private $V = [];
|
||||
|
||||
/**
|
||||
* Internal storage of singular values.
|
||||
*
|
||||
* @var array
|
||||
*/
|
||||
private $s = [];
|
||||
|
||||
/**
|
||||
* Row dimension.
|
||||
*
|
||||
* @var int
|
||||
*/
|
||||
private $m;
|
||||
|
||||
/**
|
||||
* Column dimension.
|
||||
*
|
||||
* @var int
|
||||
*/
|
||||
private $n;
|
||||
|
||||
/**
|
||||
* Construct the singular value decomposition.
|
||||
*
|
||||
* Derived from LINPACK code.
|
||||
*
|
||||
* @param mixed $Arg Rectangular matrix
|
||||
*/
|
||||
public function __construct($Arg)
|
||||
{
|
||||
// Initialize.
|
||||
$A = $Arg->getArrayCopy();
|
||||
$this->m = $Arg->getRowDimension();
|
||||
$this->n = $Arg->getColumnDimension();
|
||||
$nu = min($this->m, $this->n);
|
||||
$e = [];
|
||||
$work = [];
|
||||
$wantu = true;
|
||||
$wantv = true;
|
||||
$nct = min($this->m - 1, $this->n);
|
||||
$nrt = max(0, min($this->n - 2, $this->m));
|
||||
|
||||
// Reduce A to bidiagonal form, storing the diagonal elements
|
||||
// in s and the super-diagonal elements in e.
|
||||
$kMax = max($nct, $nrt);
|
||||
for ($k = 0; $k < $kMax; ++$k) {
|
||||
if ($k < $nct) {
|
||||
// Compute the transformation for the k-th column and
|
||||
// place the k-th diagonal in s[$k].
|
||||
// Compute 2-norm of k-th column without under/overflow.
|
||||
$this->s[$k] = 0;
|
||||
for ($i = $k; $i < $this->m; ++$i) {
|
||||
$this->s[$k] = hypo($this->s[$k], $A[$i][$k]);
|
||||
}
|
||||
if ($this->s[$k] != 0.0) {
|
||||
if ($A[$k][$k] < 0.0) {
|
||||
$this->s[$k] = -$this->s[$k];
|
||||
}
|
||||
for ($i = $k; $i < $this->m; ++$i) {
|
||||
$A[$i][$k] /= $this->s[$k];
|
||||
}
|
||||
$A[$k][$k] += 1.0;
|
||||
}
|
||||
$this->s[$k] = -$this->s[$k];
|
||||
}
|
||||
|
||||
for ($j = $k + 1; $j < $this->n; ++$j) {
|
||||
if (($k < $nct) & ($this->s[$k] != 0.0)) {
|
||||
// Apply the transformation.
|
||||
$t = 0;
|
||||
for ($i = $k; $i < $this->m; ++$i) {
|
||||
$t += $A[$i][$k] * $A[$i][$j];
|
||||
}
|
||||
$t = -$t / $A[$k][$k];
|
||||
for ($i = $k; $i < $this->m; ++$i) {
|
||||
$A[$i][$j] += $t * $A[$i][$k];
|
||||
}
|
||||
// Place the k-th row of A into e for the
|
||||
// subsequent calculation of the row transformation.
|
||||
$e[$j] = $A[$k][$j];
|
||||
}
|
||||
}
|
||||
|
||||
if ($wantu && ($k < $nct)) {
|
||||
// Place the transformation in U for subsequent back
|
||||
// multiplication.
|
||||
for ($i = $k; $i < $this->m; ++$i) {
|
||||
$this->U[$i][$k] = $A[$i][$k];
|
||||
}
|
||||
}
|
||||
|
||||
if ($k < $nrt) {
|
||||
// Compute the k-th row transformation and place the
|
||||
// k-th super-diagonal in e[$k].
|
||||
// Compute 2-norm without under/overflow.
|
||||
$e[$k] = 0;
|
||||
for ($i = $k + 1; $i < $this->n; ++$i) {
|
||||
$e[$k] = hypo($e[$k], $e[$i]);
|
||||
}
|
||||
if ($e[$k] != 0.0) {
|
||||
if ($e[$k + 1] < 0.0) {
|
||||
$e[$k] = -$e[$k];
|
||||
}
|
||||
for ($i = $k + 1; $i < $this->n; ++$i) {
|
||||
$e[$i] /= $e[$k];
|
||||
}
|
||||
$e[$k + 1] += 1.0;
|
||||
}
|
||||
$e[$k] = -$e[$k];
|
||||
if (($k + 1 < $this->m) && ($e[$k] != 0.0)) {
|
||||
// Apply the transformation.
|
||||
for ($i = $k + 1; $i < $this->m; ++$i) {
|
||||
$work[$i] = 0.0;
|
||||
}
|
||||
for ($j = $k + 1; $j < $this->n; ++$j) {
|
||||
for ($i = $k + 1; $i < $this->m; ++$i) {
|
||||
$work[$i] += $e[$j] * $A[$i][$j];
|
||||
}
|
||||
}
|
||||
for ($j = $k + 1; $j < $this->n; ++$j) {
|
||||
$t = -$e[$j] / $e[$k + 1];
|
||||
for ($i = $k + 1; $i < $this->m; ++$i) {
|
||||
$A[$i][$j] += $t * $work[$i];
|
||||
}
|
||||
}
|
||||
}
|
||||
if ($wantv) {
|
||||
// Place the transformation in V for subsequent
|
||||
// back multiplication.
|
||||
for ($i = $k + 1; $i < $this->n; ++$i) {
|
||||
$this->V[$i][$k] = $e[$i];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Set up the final bidiagonal matrix or order p.
|
||||
$p = min($this->n, $this->m + 1);
|
||||
if ($nct < $this->n) {
|
||||
$this->s[$nct] = $A[$nct][$nct];
|
||||
}
|
||||
if ($this->m < $p) {
|
||||
$this->s[$p - 1] = 0.0;
|
||||
}
|
||||
if ($nrt + 1 < $p) {
|
||||
$e[$nrt] = $A[$nrt][$p - 1];
|
||||
}
|
||||
$e[$p - 1] = 0.0;
|
||||
// If required, generate U.
|
||||
if ($wantu) {
|
||||
for ($j = $nct; $j < $nu; ++$j) {
|
||||
for ($i = 0; $i < $this->m; ++$i) {
|
||||
$this->U[$i][$j] = 0.0;
|
||||
}
|
||||
$this->U[$j][$j] = 1.0;
|
||||
}
|
||||
for ($k = $nct - 1; $k >= 0; --$k) {
|
||||
if ($this->s[$k] != 0.0) {
|
||||
for ($j = $k + 1; $j < $nu; ++$j) {
|
||||
$t = 0;
|
||||
for ($i = $k; $i < $this->m; ++$i) {
|
||||
$t += $this->U[$i][$k] * $this->U[$i][$j];
|
||||
}
|
||||
$t = -$t / $this->U[$k][$k];
|
||||
for ($i = $k; $i < $this->m; ++$i) {
|
||||
$this->U[$i][$j] += $t * $this->U[$i][$k];
|
||||
}
|
||||
}
|
||||
for ($i = $k; $i < $this->m; ++$i) {
|
||||
$this->U[$i][$k] = -$this->U[$i][$k];
|
||||
}
|
||||
$this->U[$k][$k] = 1.0 + $this->U[$k][$k];
|
||||
for ($i = 0; $i < $k - 1; ++$i) {
|
||||
$this->U[$i][$k] = 0.0;
|
||||
}
|
||||
} else {
|
||||
for ($i = 0; $i < $this->m; ++$i) {
|
||||
$this->U[$i][$k] = 0.0;
|
||||
}
|
||||
$this->U[$k][$k] = 1.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If required, generate V.
|
||||
if ($wantv) {
|
||||
for ($k = $this->n - 1; $k >= 0; --$k) {
|
||||
if (($k < $nrt) && ($e[$k] != 0.0)) {
|
||||
for ($j = $k + 1; $j < $nu; ++$j) {
|
||||
$t = 0;
|
||||
for ($i = $k + 1; $i < $this->n; ++$i) {
|
||||
$t += $this->V[$i][$k] * $this->V[$i][$j];
|
||||
}
|
||||
$t = -$t / $this->V[$k + 1][$k];
|
||||
for ($i = $k + 1; $i < $this->n; ++$i) {
|
||||
$this->V[$i][$j] += $t * $this->V[$i][$k];
|
||||
}
|
||||
}
|
||||
}
|
||||
for ($i = 0; $i < $this->n; ++$i) {
|
||||
$this->V[$i][$k] = 0.0;
|
||||
}
|
||||
$this->V[$k][$k] = 1.0;
|
||||
}
|
||||
}
|
||||
|
||||
// Main iteration loop for the singular values.
|
||||
$pp = $p - 1;
|
||||
$iter = 0;
|
||||
$eps = 2.0 ** (-52.0);
|
||||
|
||||
while ($p > 0) {
|
||||
// Here is where a test for too many iterations would go.
|
||||
// This section of the program inspects for negligible
|
||||
// elements in the s and e arrays. On completion the
|
||||
// variables kase and k are set as follows:
|
||||
// kase = 1 if s(p) and e[k-1] are negligible and k<p
|
||||
// kase = 2 if s(k) is negligible and k<p
|
||||
// kase = 3 if e[k-1] is negligible, k<p, and
|
||||
// s(k), ..., s(p) are not negligible (qr step).
|
||||
// kase = 4 if e(p-1) is negligible (convergence).
|
||||
for ($k = $p - 2; $k >= -1; --$k) {
|
||||
if ($k == -1) {
|
||||
break;
|
||||
}
|
||||
if (abs($e[$k]) <= $eps * (abs($this->s[$k]) + abs($this->s[$k + 1]))) {
|
||||
$e[$k] = 0.0;
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
if ($k == $p - 2) {
|
||||
$kase = 4;
|
||||
} else {
|
||||
for ($ks = $p - 1; $ks >= $k; --$ks) {
|
||||
if ($ks == $k) {
|
||||
break;
|
||||
}
|
||||
$t = ($ks != $p ? abs($e[$ks]) : 0.) + ($ks != $k + 1 ? abs($e[$ks - 1]) : 0.);
|
||||
if (abs($this->s[$ks]) <= $eps * $t) {
|
||||
$this->s[$ks] = 0.0;
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
if ($ks == $k) {
|
||||
$kase = 3;
|
||||
} elseif ($ks == $p - 1) {
|
||||
$kase = 1;
|
||||
} else {
|
||||
$kase = 2;
|
||||
$k = $ks;
|
||||
}
|
||||
}
|
||||
++$k;
|
||||
|
||||
// Perform the task indicated by kase.
|
||||
switch ($kase) {
|
||||
// Deflate negligible s(p).
|
||||
case 1:
|
||||
$f = $e[$p - 2];
|
||||
$e[$p - 2] = 0.0;
|
||||
for ($j = $p - 2; $j >= $k; --$j) {
|
||||
$t = hypo($this->s[$j], $f);
|
||||
$cs = $this->s[$j] / $t;
|
||||
$sn = $f / $t;
|
||||
$this->s[$j] = $t;
|
||||
if ($j != $k) {
|
||||
$f = -$sn * $e[$j - 1];
|
||||
$e[$j - 1] = $cs * $e[$j - 1];
|
||||
}
|
||||
if ($wantv) {
|
||||
for ($i = 0; $i < $this->n; ++$i) {
|
||||
$t = $cs * $this->V[$i][$j] + $sn * $this->V[$i][$p - 1];
|
||||
$this->V[$i][$p - 1] = -$sn * $this->V[$i][$j] + $cs * $this->V[$i][$p - 1];
|
||||
$this->V[$i][$j] = $t;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
break;
|
||||
// Split at negligible s(k).
|
||||
case 2:
|
||||
$f = $e[$k - 1];
|
||||
$e[$k - 1] = 0.0;
|
||||
for ($j = $k; $j < $p; ++$j) {
|
||||
$t = hypo($this->s[$j], $f);
|
||||
$cs = $this->s[$j] / $t;
|
||||
$sn = $f / $t;
|
||||
$this->s[$j] = $t;
|
||||
$f = -$sn * $e[$j];
|
||||
$e[$j] = $cs * $e[$j];
|
||||
if ($wantu) {
|
||||
for ($i = 0; $i < $this->m; ++$i) {
|
||||
$t = $cs * $this->U[$i][$j] + $sn * $this->U[$i][$k - 1];
|
||||
$this->U[$i][$k - 1] = -$sn * $this->U[$i][$j] + $cs * $this->U[$i][$k - 1];
|
||||
$this->U[$i][$j] = $t;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
break;
|
||||
// Perform one qr step.
|
||||
case 3:
|
||||
// Calculate the shift.
|
||||
$scale = max(max(max(max(abs($this->s[$p - 1]), abs($this->s[$p - 2])), abs($e[$p - 2])), abs($this->s[$k])), abs($e[$k]));
|
||||
$sp = $this->s[$p - 1] / $scale;
|
||||
$spm1 = $this->s[$p - 2] / $scale;
|
||||
$epm1 = $e[$p - 2] / $scale;
|
||||
$sk = $this->s[$k] / $scale;
|
||||
$ek = $e[$k] / $scale;
|
||||
$b = (($spm1 + $sp) * ($spm1 - $sp) + $epm1 * $epm1) / 2.0;
|
||||
$c = ($sp * $epm1) * ($sp * $epm1);
|
||||
$shift = 0.0;
|
||||
if (($b != 0.0) || ($c != 0.0)) {
|
||||
$shift = sqrt($b * $b + $c);
|
||||
if ($b < 0.0) {
|
||||
$shift = -$shift;
|
||||
}
|
||||
$shift = $c / ($b + $shift);
|
||||
}
|
||||
$f = ($sk + $sp) * ($sk - $sp) + $shift;
|
||||
$g = $sk * $ek;
|
||||
// Chase zeros.
|
||||
for ($j = $k; $j < $p - 1; ++$j) {
|
||||
$t = hypo($f, $g);
|
||||
$cs = $f / $t;
|
||||
$sn = $g / $t;
|
||||
if ($j != $k) {
|
||||
$e[$j - 1] = $t;
|
||||
}
|
||||
$f = $cs * $this->s[$j] + $sn * $e[$j];
|
||||
$e[$j] = $cs * $e[$j] - $sn * $this->s[$j];
|
||||
$g = $sn * $this->s[$j + 1];
|
||||
$this->s[$j + 1] = $cs * $this->s[$j + 1];
|
||||
if ($wantv) {
|
||||
for ($i = 0; $i < $this->n; ++$i) {
|
||||
$t = $cs * $this->V[$i][$j] + $sn * $this->V[$i][$j + 1];
|
||||
$this->V[$i][$j + 1] = -$sn * $this->V[$i][$j] + $cs * $this->V[$i][$j + 1];
|
||||
$this->V[$i][$j] = $t;
|
||||
}
|
||||
}
|
||||
$t = hypo($f, $g);
|
||||
$cs = $f / $t;
|
||||
$sn = $g / $t;
|
||||
$this->s[$j] = $t;
|
||||
$f = $cs * $e[$j] + $sn * $this->s[$j + 1];
|
||||
$this->s[$j + 1] = -$sn * $e[$j] + $cs * $this->s[$j + 1];
|
||||
$g = $sn * $e[$j + 1];
|
||||
$e[$j + 1] = $cs * $e[$j + 1];
|
||||
if ($wantu && ($j < $this->m - 1)) {
|
||||
for ($i = 0; $i < $this->m; ++$i) {
|
||||
$t = $cs * $this->U[$i][$j] + $sn * $this->U[$i][$j + 1];
|
||||
$this->U[$i][$j + 1] = -$sn * $this->U[$i][$j] + $cs * $this->U[$i][$j + 1];
|
||||
$this->U[$i][$j] = $t;
|
||||
}
|
||||
}
|
||||
}
|
||||
$e[$p - 2] = $f;
|
||||
$iter = $iter + 1;
|
||||
|
||||
break;
|
||||
// Convergence.
|
||||
case 4:
|
||||
// Make the singular values positive.
|
||||
if ($this->s[$k] <= 0.0) {
|
||||
$this->s[$k] = ($this->s[$k] < 0.0 ? -$this->s[$k] : 0.0);
|
||||
if ($wantv) {
|
||||
for ($i = 0; $i <= $pp; ++$i) {
|
||||
$this->V[$i][$k] = -$this->V[$i][$k];
|
||||
}
|
||||
}
|
||||
}
|
||||
// Order the singular values.
|
||||
while ($k < $pp) {
|
||||
if ($this->s[$k] >= $this->s[$k + 1]) {
|
||||
break;
|
||||
}
|
||||
$t = $this->s[$k];
|
||||
$this->s[$k] = $this->s[$k + 1];
|
||||
$this->s[$k + 1] = $t;
|
||||
if ($wantv && ($k < $this->n - 1)) {
|
||||
for ($i = 0; $i < $this->n; ++$i) {
|
||||
$t = $this->V[$i][$k + 1];
|
||||
$this->V[$i][$k + 1] = $this->V[$i][$k];
|
||||
$this->V[$i][$k] = $t;
|
||||
}
|
||||
}
|
||||
if ($wantu && ($k < $this->m - 1)) {
|
||||
for ($i = 0; $i < $this->m; ++$i) {
|
||||
$t = $this->U[$i][$k + 1];
|
||||
$this->U[$i][$k + 1] = $this->U[$i][$k];
|
||||
$this->U[$i][$k] = $t;
|
||||
}
|
||||
}
|
||||
++$k;
|
||||
}
|
||||
$iter = 0;
|
||||
--$p;
|
||||
|
||||
break;
|
||||
} // end switch
|
||||
} // end while
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the left singular vectors.
|
||||
*
|
||||
* @return Matrix U
|
||||
*/
|
||||
public function getU()
|
||||
{
|
||||
return new Matrix($this->U, $this->m, min($this->m + 1, $this->n));
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the right singular vectors.
|
||||
*
|
||||
* @return Matrix V
|
||||
*/
|
||||
public function getV()
|
||||
{
|
||||
return new Matrix($this->V);
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the one-dimensional array of singular values.
|
||||
*
|
||||
* @return array diagonal of S
|
||||
*/
|
||||
public function getSingularValues()
|
||||
{
|
||||
return $this->s;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the diagonal matrix of singular values.
|
||||
*
|
||||
* @return Matrix S
|
||||
*/
|
||||
public function getS()
|
||||
{
|
||||
for ($i = 0; $i < $this->n; ++$i) {
|
||||
for ($j = 0; $j < $this->n; ++$j) {
|
||||
$S[$i][$j] = 0.0;
|
||||
}
|
||||
$S[$i][$i] = $this->s[$i];
|
||||
}
|
||||
|
||||
return new Matrix($S);
|
||||
}
|
||||
|
||||
/**
|
||||
* Two norm.
|
||||
*
|
||||
* @return float max(S)
|
||||
*/
|
||||
public function norm2()
|
||||
{
|
||||
return $this->s[0];
|
||||
}
|
||||
|
||||
/**
|
||||
* Two norm condition number.
|
||||
*
|
||||
* @return float max(S)/min(S)
|
||||
*/
|
||||
public function cond()
|
||||
{
|
||||
return $this->s[0] / $this->s[min($this->m, $this->n) - 1];
|
||||
}
|
||||
|
||||
/**
|
||||
* Effective numerical matrix rank.
|
||||
*
|
||||
* @return int Number of nonnegligible singular values
|
||||
*/
|
||||
public function rank()
|
||||
{
|
||||
$eps = 2.0 ** (-52.0);
|
||||
$tol = max($this->m, $this->n) * $this->s[0] * $eps;
|
||||
$r = 0;
|
||||
$iMax = count($this->s);
|
||||
for ($i = 0; $i < $iMax; ++$i) {
|
||||
if ($this->s[$i] > $tol) {
|
||||
++$r;
|
||||
}
|
||||
}
|
||||
|
||||
return $r;
|
||||
}
|
||||
}
|
||||
31
vendor/PhpSpreadsheet/Shared/JAMA/utils/Maths.php
vendored
Normal file
31
vendor/PhpSpreadsheet/Shared/JAMA/utils/Maths.php
vendored
Normal file
@@ -0,0 +1,31 @@
|
||||
<?php
|
||||
|
||||
/**
|
||||
* Pythagorean Theorem:.
|
||||
*
|
||||
* a = 3
|
||||
* b = 4
|
||||
* r = sqrt(square(a) + square(b))
|
||||
* r = 5
|
||||
*
|
||||
* r = sqrt(a^2 + b^2) without under/overflow.
|
||||
*
|
||||
* @param mixed $a
|
||||
* @param mixed $b
|
||||
*
|
||||
* @return float
|
||||
*/
|
||||
function hypo($a, $b)
|
||||
{
|
||||
if (abs($a) > abs($b)) {
|
||||
$r = $b / $a;
|
||||
$r = abs($a) * sqrt(1 + $r * $r);
|
||||
} elseif ($b != 0) {
|
||||
$r = $a / $b;
|
||||
$r = abs($b) * sqrt(1 + $r * $r);
|
||||
} else {
|
||||
$r = 0.0;
|
||||
}
|
||||
|
||||
return $r;
|
||||
}
|
||||
Reference in New Issue
Block a user