3907 lines
124 KiB
PHP
3907 lines
124 KiB
PHP
|
<?php
|
||
|
|
||
|
namespace PhpOffice\PhpSpreadsheet\Calculation;
|
||
|
|
||
|
use PhpOffice\PhpSpreadsheet\Shared\Trend\Trend;
|
||
|
|
||
|
class Statistical
|
||
|
{
|
||
|
const LOG_GAMMA_X_MAX_VALUE = 2.55e305;
|
||
|
const XMININ = 2.23e-308;
|
||
|
const EPS = 2.22e-16;
|
||
|
const MAX_VALUE = 1.2e308;
|
||
|
const MAX_ITERATIONS = 256;
|
||
|
const SQRT2PI = 2.5066282746310005024157652848110452530069867406099;
|
||
|
|
||
|
private static function checkTrendArrays(&$array1, &$array2)
|
||
|
{
|
||
|
if (!is_array($array1)) {
|
||
|
$array1 = [$array1];
|
||
|
}
|
||
|
if (!is_array($array2)) {
|
||
|
$array2 = [$array2];
|
||
|
}
|
||
|
|
||
|
$array1 = Functions::flattenArray($array1);
|
||
|
$array2 = Functions::flattenArray($array2);
|
||
|
foreach ($array1 as $key => $value) {
|
||
|
if ((is_bool($value)) || (is_string($value)) || ($value === null)) {
|
||
|
unset($array1[$key], $array2[$key]);
|
||
|
}
|
||
|
}
|
||
|
foreach ($array2 as $key => $value) {
|
||
|
if ((is_bool($value)) || (is_string($value)) || ($value === null)) {
|
||
|
unset($array1[$key], $array2[$key]);
|
||
|
}
|
||
|
}
|
||
|
$array1 = array_merge($array1);
|
||
|
$array2 = array_merge($array2);
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Incomplete beta function.
|
||
|
*
|
||
|
* @author Jaco van Kooten
|
||
|
* @author Paul Meagher
|
||
|
*
|
||
|
* The computation is based on formulas from Numerical Recipes, Chapter 6.4 (W.H. Press et al, 1992).
|
||
|
*
|
||
|
* @param mixed $x require 0<=x<=1
|
||
|
* @param mixed $p require p>0
|
||
|
* @param mixed $q require q>0
|
||
|
*
|
||
|
* @return float 0 if x<0, p<=0, q<=0 or p+q>2.55E305 and 1 if x>1 to avoid errors and over/underflow
|
||
|
*/
|
||
|
private static function incompleteBeta($x, $p, $q)
|
||
|
{
|
||
|
if ($x <= 0.0) {
|
||
|
return 0.0;
|
||
|
} elseif ($x >= 1.0) {
|
||
|
return 1.0;
|
||
|
} elseif (($p <= 0.0) || ($q <= 0.0) || (($p + $q) > self::LOG_GAMMA_X_MAX_VALUE)) {
|
||
|
return 0.0;
|
||
|
}
|
||
|
$beta_gam = exp((0 - self::logBeta($p, $q)) + $p * log($x) + $q * log(1.0 - $x));
|
||
|
if ($x < ($p + 1.0) / ($p + $q + 2.0)) {
|
||
|
return $beta_gam * self::betaFraction($x, $p, $q) / $p;
|
||
|
}
|
||
|
|
||
|
return 1.0 - ($beta_gam * self::betaFraction(1 - $x, $q, $p) / $q);
|
||
|
}
|
||
|
|
||
|
// Function cache for logBeta function
|
||
|
private static $logBetaCacheP = 0.0;
|
||
|
|
||
|
private static $logBetaCacheQ = 0.0;
|
||
|
|
||
|
private static $logBetaCacheResult = 0.0;
|
||
|
|
||
|
/**
|
||
|
* The natural logarithm of the beta function.
|
||
|
*
|
||
|
* @param mixed $p require p>0
|
||
|
* @param mixed $q require q>0
|
||
|
*
|
||
|
* @return float 0 if p<=0, q<=0 or p+q>2.55E305 to avoid errors and over/underflow
|
||
|
*
|
||
|
* @author Jaco van Kooten
|
||
|
*/
|
||
|
private static function logBeta($p, $q)
|
||
|
{
|
||
|
if ($p != self::$logBetaCacheP || $q != self::$logBetaCacheQ) {
|
||
|
self::$logBetaCacheP = $p;
|
||
|
self::$logBetaCacheQ = $q;
|
||
|
if (($p <= 0.0) || ($q <= 0.0) || (($p + $q) > self::LOG_GAMMA_X_MAX_VALUE)) {
|
||
|
self::$logBetaCacheResult = 0.0;
|
||
|
} else {
|
||
|
self::$logBetaCacheResult = self::logGamma($p) + self::logGamma($q) - self::logGamma($p + $q);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return self::$logBetaCacheResult;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Evaluates of continued fraction part of incomplete beta function.
|
||
|
* Based on an idea from Numerical Recipes (W.H. Press et al, 1992).
|
||
|
*
|
||
|
* @author Jaco van Kooten
|
||
|
*
|
||
|
* @param mixed $x
|
||
|
* @param mixed $p
|
||
|
* @param mixed $q
|
||
|
*
|
||
|
* @return float
|
||
|
*/
|
||
|
private static function betaFraction($x, $p, $q)
|
||
|
{
|
||
|
$c = 1.0;
|
||
|
$sum_pq = $p + $q;
|
||
|
$p_plus = $p + 1.0;
|
||
|
$p_minus = $p - 1.0;
|
||
|
$h = 1.0 - $sum_pq * $x / $p_plus;
|
||
|
if (abs($h) < self::XMININ) {
|
||
|
$h = self::XMININ;
|
||
|
}
|
||
|
$h = 1.0 / $h;
|
||
|
$frac = $h;
|
||
|
$m = 1;
|
||
|
$delta = 0.0;
|
||
|
while ($m <= self::MAX_ITERATIONS && abs($delta - 1.0) > Functions::PRECISION) {
|
||
|
$m2 = 2 * $m;
|
||
|
// even index for d
|
||
|
$d = $m * ($q - $m) * $x / (($p_minus + $m2) * ($p + $m2));
|
||
|
$h = 1.0 + $d * $h;
|
||
|
if (abs($h) < self::XMININ) {
|
||
|
$h = self::XMININ;
|
||
|
}
|
||
|
$h = 1.0 / $h;
|
||
|
$c = 1.0 + $d / $c;
|
||
|
if (abs($c) < self::XMININ) {
|
||
|
$c = self::XMININ;
|
||
|
}
|
||
|
$frac *= $h * $c;
|
||
|
// odd index for d
|
||
|
$d = -($p + $m) * ($sum_pq + $m) * $x / (($p + $m2) * ($p_plus + $m2));
|
||
|
$h = 1.0 + $d * $h;
|
||
|
if (abs($h) < self::XMININ) {
|
||
|
$h = self::XMININ;
|
||
|
}
|
||
|
$h = 1.0 / $h;
|
||
|
$c = 1.0 + $d / $c;
|
||
|
if (abs($c) < self::XMININ) {
|
||
|
$c = self::XMININ;
|
||
|
}
|
||
|
$delta = $h * $c;
|
||
|
$frac *= $delta;
|
||
|
++$m;
|
||
|
}
|
||
|
|
||
|
return $frac;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* logGamma function.
|
||
|
*
|
||
|
* @version 1.1
|
||
|
*
|
||
|
* @author Jaco van Kooten
|
||
|
*
|
||
|
* Original author was Jaco van Kooten. Ported to PHP by Paul Meagher.
|
||
|
*
|
||
|
* The natural logarithm of the gamma function. <br />
|
||
|
* Based on public domain NETLIB (Fortran) code by W. J. Cody and L. Stoltz <br />
|
||
|
* Applied Mathematics Division <br />
|
||
|
* Argonne National Laboratory <br />
|
||
|
* Argonne, IL 60439 <br />
|
||
|
* <p>
|
||
|
* References:
|
||
|
* <ol>
|
||
|
* <li>W. J. Cody and K. E. Hillstrom, 'Chebyshev Approximations for the Natural
|
||
|
* Logarithm of the Gamma Function,' Math. Comp. 21, 1967, pp. 198-203.</li>
|
||
|
* <li>K. E. Hillstrom, ANL/AMD Program ANLC366S, DGAMMA/DLGAMA, May, 1969.</li>
|
||
|
* <li>Hart, Et. Al., Computer Approximations, Wiley and sons, New York, 1968.</li>
|
||
|
* </ol>
|
||
|
* </p>
|
||
|
* <p>
|
||
|
* From the original documentation:
|
||
|
* </p>
|
||
|
* <p>
|
||
|
* This routine calculates the LOG(GAMMA) function for a positive real argument X.
|
||
|
* Computation is based on an algorithm outlined in references 1 and 2.
|
||
|
* The program uses rational functions that theoretically approximate LOG(GAMMA)
|
||
|
* to at least 18 significant decimal digits. The approximation for X > 12 is from
|
||
|
* reference 3, while approximations for X < 12.0 are similar to those in reference
|
||
|
* 1, but are unpublished. The accuracy achieved depends on the arithmetic system,
|
||
|
* the compiler, the intrinsic functions, and proper selection of the
|
||
|
* machine-dependent constants.
|
||
|
* </p>
|
||
|
* <p>
|
||
|
* Error returns: <br />
|
||
|
* The program returns the value XINF for X .LE. 0.0 or when overflow would occur.
|
||
|
* The computation is believed to be free of underflow and overflow.
|
||
|
* </p>
|
||
|
*
|
||
|
* @return float MAX_VALUE for x < 0.0 or when overflow would occur, i.e. x > 2.55E305
|
||
|
*/
|
||
|
|
||
|
// Function cache for logGamma
|
||
|
private static $logGammaCacheResult = 0.0;
|
||
|
|
||
|
private static $logGammaCacheX = 0.0;
|
||
|
|
||
|
private static function logGamma($x)
|
||
|
{
|
||
|
// Log Gamma related constants
|
||
|
static $lg_d1 = -0.5772156649015328605195174;
|
||
|
static $lg_d2 = 0.4227843350984671393993777;
|
||
|
static $lg_d4 = 1.791759469228055000094023;
|
||
|
|
||
|
static $lg_p1 = [
|
||
|
4.945235359296727046734888,
|
||
|
201.8112620856775083915565,
|
||
|
2290.838373831346393026739,
|
||
|
11319.67205903380828685045,
|
||
|
28557.24635671635335736389,
|
||
|
38484.96228443793359990269,
|
||
|
26377.48787624195437963534,
|
||
|
7225.813979700288197698961,
|
||
|
];
|
||
|
static $lg_p2 = [
|
||
|
4.974607845568932035012064,
|
||
|
542.4138599891070494101986,
|
||
|
15506.93864978364947665077,
|
||
|
184793.2904445632425417223,
|
||
|
1088204.76946882876749847,
|
||
|
3338152.967987029735917223,
|
||
|
5106661.678927352456275255,
|
||
|
3074109.054850539556250927,
|
||
|
];
|
||
|
static $lg_p4 = [
|
||
|
14745.02166059939948905062,
|
||
|
2426813.369486704502836312,
|
||
|
121475557.4045093227939592,
|
||
|
2663432449.630976949898078,
|
||
|
29403789566.34553899906876,
|
||
|
170266573776.5398868392998,
|
||
|
492612579337.743088758812,
|
||
|
560625185622.3951465078242,
|
||
|
];
|
||
|
static $lg_q1 = [
|
||
|
67.48212550303777196073036,
|
||
|
1113.332393857199323513008,
|
||
|
7738.757056935398733233834,
|
||
|
27639.87074403340708898585,
|
||
|
54993.10206226157329794414,
|
||
|
61611.22180066002127833352,
|
||
|
36351.27591501940507276287,
|
||
|
8785.536302431013170870835,
|
||
|
];
|
||
|
static $lg_q2 = [
|
||
|
183.0328399370592604055942,
|
||
|
7765.049321445005871323047,
|
||
|
133190.3827966074194402448,
|
||
|
1136705.821321969608938755,
|
||
|
5267964.117437946917577538,
|
||
|
13467014.54311101692290052,
|
||
|
17827365.30353274213975932,
|
||
|
9533095.591844353613395747,
|
||
|
];
|
||
|
static $lg_q4 = [
|
||
|
2690.530175870899333379843,
|
||
|
639388.5654300092398984238,
|
||
|
41355999.30241388052042842,
|
||
|
1120872109.61614794137657,
|
||
|
14886137286.78813811542398,
|
||
|
101680358627.2438228077304,
|
||
|
341747634550.7377132798597,
|
||
|
446315818741.9713286462081,
|
||
|
];
|
||
|
static $lg_c = [
|
||
|
-0.001910444077728,
|
||
|
8.4171387781295e-4,
|
||
|
-5.952379913043012e-4,
|
||
|
7.93650793500350248e-4,
|
||
|
-0.002777777777777681622553,
|
||
|
0.08333333333333333331554247,
|
||
|
0.0057083835261,
|
||
|
];
|
||
|
|
||
|
// Rough estimate of the fourth root of logGamma_xBig
|
||
|
static $lg_frtbig = 2.25e76;
|
||
|
static $pnt68 = 0.6796875;
|
||
|
|
||
|
if ($x == self::$logGammaCacheX) {
|
||
|
return self::$logGammaCacheResult;
|
||
|
}
|
||
|
$y = $x;
|
||
|
if ($y > 0.0 && $y <= self::LOG_GAMMA_X_MAX_VALUE) {
|
||
|
if ($y <= self::EPS) {
|
||
|
$res = -log($y);
|
||
|
} elseif ($y <= 1.5) {
|
||
|
// ---------------------
|
||
|
// EPS .LT. X .LE. 1.5
|
||
|
// ---------------------
|
||
|
if ($y < $pnt68) {
|
||
|
$corr = -log($y);
|
||
|
$xm1 = $y;
|
||
|
} else {
|
||
|
$corr = 0.0;
|
||
|
$xm1 = $y - 1.0;
|
||
|
}
|
||
|
if ($y <= 0.5 || $y >= $pnt68) {
|
||
|
$xden = 1.0;
|
||
|
$xnum = 0.0;
|
||
|
for ($i = 0; $i < 8; ++$i) {
|
||
|
$xnum = $xnum * $xm1 + $lg_p1[$i];
|
||
|
$xden = $xden * $xm1 + $lg_q1[$i];
|
||
|
}
|
||
|
$res = $corr + $xm1 * ($lg_d1 + $xm1 * ($xnum / $xden));
|
||
|
} else {
|
||
|
$xm2 = $y - 1.0;
|
||
|
$xden = 1.0;
|
||
|
$xnum = 0.0;
|
||
|
for ($i = 0; $i < 8; ++$i) {
|
||
|
$xnum = $xnum * $xm2 + $lg_p2[$i];
|
||
|
$xden = $xden * $xm2 + $lg_q2[$i];
|
||
|
}
|
||
|
$res = $corr + $xm2 * ($lg_d2 + $xm2 * ($xnum / $xden));
|
||
|
}
|
||
|
} elseif ($y <= 4.0) {
|
||
|
// ---------------------
|
||
|
// 1.5 .LT. X .LE. 4.0
|
||
|
// ---------------------
|
||
|
$xm2 = $y - 2.0;
|
||
|
$xden = 1.0;
|
||
|
$xnum = 0.0;
|
||
|
for ($i = 0; $i < 8; ++$i) {
|
||
|
$xnum = $xnum * $xm2 + $lg_p2[$i];
|
||
|
$xden = $xden * $xm2 + $lg_q2[$i];
|
||
|
}
|
||
|
$res = $xm2 * ($lg_d2 + $xm2 * ($xnum / $xden));
|
||
|
} elseif ($y <= 12.0) {
|
||
|
// ----------------------
|
||
|
// 4.0 .LT. X .LE. 12.0
|
||
|
// ----------------------
|
||
|
$xm4 = $y - 4.0;
|
||
|
$xden = -1.0;
|
||
|
$xnum = 0.0;
|
||
|
for ($i = 0; $i < 8; ++$i) {
|
||
|
$xnum = $xnum * $xm4 + $lg_p4[$i];
|
||
|
$xden = $xden * $xm4 + $lg_q4[$i];
|
||
|
}
|
||
|
$res = $lg_d4 + $xm4 * ($xnum / $xden);
|
||
|
} else {
|
||
|
// ---------------------------------
|
||
|
// Evaluate for argument .GE. 12.0
|
||
|
// ---------------------------------
|
||
|
$res = 0.0;
|
||
|
if ($y <= $lg_frtbig) {
|
||
|
$res = $lg_c[6];
|
||
|
$ysq = $y * $y;
|
||
|
for ($i = 0; $i < 6; ++$i) {
|
||
|
$res = $res / $ysq + $lg_c[$i];
|
||
|
}
|
||
|
$res /= $y;
|
||
|
$corr = log($y);
|
||
|
$res = $res + log(self::SQRT2PI) - 0.5 * $corr;
|
||
|
$res += $y * ($corr - 1.0);
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
// --------------------------
|
||
|
// Return for bad arguments
|
||
|
// --------------------------
|
||
|
$res = self::MAX_VALUE;
|
||
|
}
|
||
|
// ------------------------------
|
||
|
// Final adjustments and return
|
||
|
// ------------------------------
|
||
|
self::$logGammaCacheX = $x;
|
||
|
self::$logGammaCacheResult = $res;
|
||
|
|
||
|
return $res;
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Private implementation of the incomplete Gamma function
|
||
|
//
|
||
|
private static function incompleteGamma($a, $x)
|
||
|
{
|
||
|
static $max = 32;
|
||
|
$summer = 0;
|
||
|
for ($n = 0; $n <= $max; ++$n) {
|
||
|
$divisor = $a;
|
||
|
for ($i = 1; $i <= $n; ++$i) {
|
||
|
$divisor *= ($a + $i);
|
||
|
}
|
||
|
$summer += ($x ** $n / $divisor);
|
||
|
}
|
||
|
|
||
|
return $x ** $a * exp(0 - $x) * $summer;
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Private implementation of the Gamma function
|
||
|
//
|
||
|
private static function gamma($data)
|
||
|
{
|
||
|
if ($data == 0.0) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static $p0 = 1.000000000190015;
|
||
|
static $p = [
|
||
|
1 => 76.18009172947146,
|
||
|
2 => -86.50532032941677,
|
||
|
3 => 24.01409824083091,
|
||
|
4 => -1.231739572450155,
|
||
|
5 => 1.208650973866179e-3,
|
||
|
6 => -5.395239384953e-6,
|
||
|
];
|
||
|
|
||
|
$y = $x = $data;
|
||
|
$tmp = $x + 5.5;
|
||
|
$tmp -= ($x + 0.5) * log($tmp);
|
||
|
|
||
|
$summer = $p0;
|
||
|
for ($j = 1; $j <= 6; ++$j) {
|
||
|
$summer += ($p[$j] / ++$y);
|
||
|
}
|
||
|
|
||
|
return exp(0 - $tmp + log(self::SQRT2PI * $summer / $x));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* inverse_ncdf.php
|
||
|
* -------------------
|
||
|
* begin : Friday, January 16, 2004
|
||
|
* copyright : (C) 2004 Michael Nickerson
|
||
|
* email : nickersonm@yahoo.com
|
||
|
*
|
||
|
*/
|
||
|
private static function inverseNcdf($p)
|
||
|
{
|
||
|
// Inverse ncdf approximation by Peter J. Acklam, implementation adapted to
|
||
|
// PHP by Michael Nickerson, using Dr. Thomas Ziegler's C implementation as
|
||
|
// a guide. http://home.online.no/~pjacklam/notes/invnorm/index.html
|
||
|
// I have not checked the accuracy of this implementation. Be aware that PHP
|
||
|
// will truncate the coeficcients to 14 digits.
|
||
|
|
||
|
// You have permission to use and distribute this function freely for
|
||
|
// whatever purpose you want, but please show common courtesy and give credit
|
||
|
// where credit is due.
|
||
|
|
||
|
// Input paramater is $p - probability - where 0 < p < 1.
|
||
|
|
||
|
// Coefficients in rational approximations
|
||
|
static $a = [
|
||
|
1 => -3.969683028665376e+01,
|
||
|
2 => 2.209460984245205e+02,
|
||
|
3 => -2.759285104469687e+02,
|
||
|
4 => 1.383577518672690e+02,
|
||
|
5 => -3.066479806614716e+01,
|
||
|
6 => 2.506628277459239e+00,
|
||
|
];
|
||
|
|
||
|
static $b = [
|
||
|
1 => -5.447609879822406e+01,
|
||
|
2 => 1.615858368580409e+02,
|
||
|
3 => -1.556989798598866e+02,
|
||
|
4 => 6.680131188771972e+01,
|
||
|
5 => -1.328068155288572e+01,
|
||
|
];
|
||
|
|
||
|
static $c = [
|
||
|
1 => -7.784894002430293e-03,
|
||
|
2 => -3.223964580411365e-01,
|
||
|
3 => -2.400758277161838e+00,
|
||
|
4 => -2.549732539343734e+00,
|
||
|
5 => 4.374664141464968e+00,
|
||
|
6 => 2.938163982698783e+00,
|
||
|
];
|
||
|
|
||
|
static $d = [
|
||
|
1 => 7.784695709041462e-03,
|
||
|
2 => 3.224671290700398e-01,
|
||
|
3 => 2.445134137142996e+00,
|
||
|
4 => 3.754408661907416e+00,
|
||
|
];
|
||
|
|
||
|
// Define lower and upper region break-points.
|
||
|
$p_low = 0.02425; //Use lower region approx. below this
|
||
|
$p_high = 1 - $p_low; //Use upper region approx. above this
|
||
|
|
||
|
if (0 < $p && $p < $p_low) {
|
||
|
// Rational approximation for lower region.
|
||
|
$q = sqrt(-2 * log($p));
|
||
|
|
||
|
return ((((($c[1] * $q + $c[2]) * $q + $c[3]) * $q + $c[4]) * $q + $c[5]) * $q + $c[6]) /
|
||
|
(((($d[1] * $q + $d[2]) * $q + $d[3]) * $q + $d[4]) * $q + 1);
|
||
|
} elseif ($p_low <= $p && $p <= $p_high) {
|
||
|
// Rational approximation for central region.
|
||
|
$q = $p - 0.5;
|
||
|
$r = $q * $q;
|
||
|
|
||
|
return ((((($a[1] * $r + $a[2]) * $r + $a[3]) * $r + $a[4]) * $r + $a[5]) * $r + $a[6]) * $q /
|
||
|
((((($b[1] * $r + $b[2]) * $r + $b[3]) * $r + $b[4]) * $r + $b[5]) * $r + 1);
|
||
|
} elseif ($p_high < $p && $p < 1) {
|
||
|
// Rational approximation for upper region.
|
||
|
$q = sqrt(-2 * log(1 - $p));
|
||
|
|
||
|
return -((((($c[1] * $q + $c[2]) * $q + $c[3]) * $q + $c[4]) * $q + $c[5]) * $q + $c[6]) /
|
||
|
(((($d[1] * $q + $d[2]) * $q + $d[3]) * $q + $d[4]) * $q + 1);
|
||
|
}
|
||
|
// If 0 < p < 1, return a null value
|
||
|
return Functions::NULL();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* MS Excel does not count Booleans if passed as cell values, but they are counted if passed as literals.
|
||
|
* OpenOffice Calc always counts Booleans.
|
||
|
* Gnumeric never counts Booleans.
|
||
|
*
|
||
|
* @param mixed $arg
|
||
|
* @param mixed $k
|
||
|
*
|
||
|
* @return int|mixed
|
||
|
*/
|
||
|
private static function testAcceptedBoolean($arg, $k)
|
||
|
{
|
||
|
if (
|
||
|
(is_bool($arg)) &&
|
||
|
((!Functions::isCellValue($k) && (Functions::getCompatibilityMode() === Functions::COMPATIBILITY_EXCEL)) ||
|
||
|
(Functions::getCompatibilityMode() === Functions::COMPATIBILITY_OPENOFFICE))
|
||
|
) {
|
||
|
$arg = (int) $arg;
|
||
|
}
|
||
|
|
||
|
return $arg;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @param mixed $arg
|
||
|
* @param mixed $k
|
||
|
*
|
||
|
* @return bool
|
||
|
*/
|
||
|
private static function isAcceptedCountable($arg, $k)
|
||
|
{
|
||
|
if (
|
||
|
((is_numeric($arg)) && (!is_string($arg))) ||
|
||
|
((is_numeric($arg)) && (!Functions::isCellValue($k)) &&
|
||
|
(Functions::getCompatibilityMode() !== Functions::COMPATIBILITY_GNUMERIC))
|
||
|
) {
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* AVEDEV.
|
||
|
*
|
||
|
* Returns the average of the absolute deviations of data points from their mean.
|
||
|
* AVEDEV is a measure of the variability in a data set.
|
||
|
*
|
||
|
* Excel Function:
|
||
|
* AVEDEV(value1[,value2[, ...]])
|
||
|
*
|
||
|
* @param mixed ...$args Data values
|
||
|
*
|
||
|
* @return float|string
|
||
|
*/
|
||
|
public static function AVEDEV(...$args)
|
||
|
{
|
||
|
$aArgs = Functions::flattenArrayIndexed($args);
|
||
|
|
||
|
// Return value
|
||
|
$returnValue = 0;
|
||
|
|
||
|
$aMean = self::AVERAGE(...$args);
|
||
|
if ($aMean === Functions::DIV0()) {
|
||
|
return Functions::NAN();
|
||
|
} elseif ($aMean === Functions::VALUE()) {
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
|
||
|
$aCount = 0;
|
||
|
foreach ($aArgs as $k => $arg) {
|
||
|
$arg = self::testAcceptedBoolean($arg, $k);
|
||
|
// Is it a numeric value?
|
||
|
// Strings containing numeric values are only counted if they are string literals (not cell values)
|
||
|
// and then only in MS Excel and in Open Office, not in Gnumeric
|
||
|
if ((is_string($arg)) && (!is_numeric($arg)) && (!Functions::isCellValue($k))) {
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
if (self::isAcceptedCountable($arg, $k)) {
|
||
|
$returnValue += abs($arg - $aMean);
|
||
|
++$aCount;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Return
|
||
|
if ($aCount === 0) {
|
||
|
return Functions::DIV0();
|
||
|
}
|
||
|
|
||
|
return $returnValue / $aCount;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* AVERAGE.
|
||
|
*
|
||
|
* Returns the average (arithmetic mean) of the arguments
|
||
|
*
|
||
|
* Excel Function:
|
||
|
* AVERAGE(value1[,value2[, ...]])
|
||
|
*
|
||
|
* @param mixed ...$args Data values
|
||
|
*
|
||
|
* @return float|string
|
||
|
*/
|
||
|
public static function AVERAGE(...$args)
|
||
|
{
|
||
|
$returnValue = $aCount = 0;
|
||
|
|
||
|
// Loop through arguments
|
||
|
foreach (Functions::flattenArrayIndexed($args) as $k => $arg) {
|
||
|
$arg = self::testAcceptedBoolean($arg, $k);
|
||
|
// Is it a numeric value?
|
||
|
// Strings containing numeric values are only counted if they are string literals (not cell values)
|
||
|
// and then only in MS Excel and in Open Office, not in Gnumeric
|
||
|
if ((is_string($arg)) && (!is_numeric($arg)) && (!Functions::isCellValue($k))) {
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
if (self::isAcceptedCountable($arg, $k)) {
|
||
|
$returnValue += $arg;
|
||
|
++$aCount;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Return
|
||
|
if ($aCount > 0) {
|
||
|
return $returnValue / $aCount;
|
||
|
}
|
||
|
|
||
|
return Functions::DIV0();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* AVERAGEA.
|
||
|
*
|
||
|
* Returns the average of its arguments, including numbers, text, and logical values
|
||
|
*
|
||
|
* Excel Function:
|
||
|
* AVERAGEA(value1[,value2[, ...]])
|
||
|
*
|
||
|
* @param mixed ...$args Data values
|
||
|
*
|
||
|
* @return float|string
|
||
|
*/
|
||
|
public static function AVERAGEA(...$args)
|
||
|
{
|
||
|
$returnValue = null;
|
||
|
|
||
|
$aCount = 0;
|
||
|
// Loop through arguments
|
||
|
foreach (Functions::flattenArrayIndexed($args) as $k => $arg) {
|
||
|
if (
|
||
|
(is_bool($arg)) &&
|
||
|
(!Functions::isMatrixValue($k))
|
||
|
) {
|
||
|
} else {
|
||
|
if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) {
|
||
|
if (is_bool($arg)) {
|
||
|
$arg = (int) $arg;
|
||
|
} elseif (is_string($arg)) {
|
||
|
$arg = 0;
|
||
|
}
|
||
|
$returnValue += $arg;
|
||
|
++$aCount;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if ($aCount > 0) {
|
||
|
return $returnValue / $aCount;
|
||
|
}
|
||
|
|
||
|
return Functions::DIV0();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* AVERAGEIF.
|
||
|
*
|
||
|
* Returns the average value from a range of cells that contain numbers within the list of arguments
|
||
|
*
|
||
|
* Excel Function:
|
||
|
* AVERAGEIF(value1[,value2[, ...]],condition)
|
||
|
*
|
||
|
* @param mixed $aArgs Data values
|
||
|
* @param string $condition the criteria that defines which cells will be checked
|
||
|
* @param mixed[] $averageArgs Data values
|
||
|
*
|
||
|
* @return float|string
|
||
|
*/
|
||
|
public static function AVERAGEIF($aArgs, $condition, $averageArgs = [])
|
||
|
{
|
||
|
$returnValue = 0;
|
||
|
|
||
|
$aArgs = Functions::flattenArray($aArgs);
|
||
|
$averageArgs = Functions::flattenArray($averageArgs);
|
||
|
if (empty($averageArgs)) {
|
||
|
$averageArgs = $aArgs;
|
||
|
}
|
||
|
$condition = Functions::ifCondition($condition);
|
||
|
$conditionIsNumeric = strpos($condition, '"') === false;
|
||
|
|
||
|
// Loop through arguments
|
||
|
$aCount = 0;
|
||
|
foreach ($aArgs as $key => $arg) {
|
||
|
if (!is_numeric($arg)) {
|
||
|
if ($conditionIsNumeric) {
|
||
|
continue;
|
||
|
}
|
||
|
$arg = Calculation::wrapResult(strtoupper($arg));
|
||
|
} elseif (!$conditionIsNumeric) {
|
||
|
continue;
|
||
|
}
|
||
|
$testCondition = '=' . $arg . $condition;
|
||
|
if (Calculation::getInstance()->_calculateFormulaValue($testCondition)) {
|
||
|
$returnValue += $averageArgs[$key];
|
||
|
++$aCount;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if ($aCount > 0) {
|
||
|
return $returnValue / $aCount;
|
||
|
}
|
||
|
|
||
|
return Functions::DIV0();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* BETADIST.
|
||
|
*
|
||
|
* Returns the beta distribution.
|
||
|
*
|
||
|
* @param float $value Value at which you want to evaluate the distribution
|
||
|
* @param float $alpha Parameter to the distribution
|
||
|
* @param float $beta Parameter to the distribution
|
||
|
* @param mixed $rMin
|
||
|
* @param mixed $rMax
|
||
|
*
|
||
|
* @return float|string
|
||
|
*/
|
||
|
public static function BETADIST($value, $alpha, $beta, $rMin = 0, $rMax = 1)
|
||
|
{
|
||
|
$value = Functions::flattenSingleValue($value);
|
||
|
$alpha = Functions::flattenSingleValue($alpha);
|
||
|
$beta = Functions::flattenSingleValue($beta);
|
||
|
$rMin = Functions::flattenSingleValue($rMin);
|
||
|
$rMax = Functions::flattenSingleValue($rMax);
|
||
|
|
||
|
if ((is_numeric($value)) && (is_numeric($alpha)) && (is_numeric($beta)) && (is_numeric($rMin)) && (is_numeric($rMax))) {
|
||
|
if (($value < $rMin) || ($value > $rMax) || ($alpha <= 0) || ($beta <= 0) || ($rMin == $rMax)) {
|
||
|
return Functions::NAN();
|
||
|
}
|
||
|
if ($rMin > $rMax) {
|
||
|
$tmp = $rMin;
|
||
|
$rMin = $rMax;
|
||
|
$rMax = $tmp;
|
||
|
}
|
||
|
$value -= $rMin;
|
||
|
$value /= ($rMax - $rMin);
|
||
|
|
||
|
return self::incompleteBeta($value, $alpha, $beta);
|
||
|
}
|
||
|
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* BETAINV.
|
||
|
*
|
||
|
* Returns the inverse of the Beta distribution.
|
||
|
*
|
||
|
* @param float $probability Probability at which you want to evaluate the distribution
|
||
|
* @param float $alpha Parameter to the distribution
|
||
|
* @param float $beta Parameter to the distribution
|
||
|
* @param float $rMin Minimum value
|
||
|
* @param float $rMax Maximum value
|
||
|
*
|
||
|
* @return float|string
|
||
|
*/
|
||
|
public static function BETAINV($probability, $alpha, $beta, $rMin = 0, $rMax = 1)
|
||
|
{
|
||
|
$probability = Functions::flattenSingleValue($probability);
|
||
|
$alpha = Functions::flattenSingleValue($alpha);
|
||
|
$beta = Functions::flattenSingleValue($beta);
|
||
|
$rMin = Functions::flattenSingleValue($rMin);
|
||
|
$rMax = Functions::flattenSingleValue($rMax);
|
||
|
|
||
|
if ((is_numeric($probability)) && (is_numeric($alpha)) && (is_numeric($beta)) && (is_numeric($rMin)) && (is_numeric($rMax))) {
|
||
|
if (($alpha <= 0) || ($beta <= 0) || ($rMin == $rMax) || ($probability <= 0) || ($probability > 1)) {
|
||
|
return Functions::NAN();
|
||
|
}
|
||
|
if ($rMin > $rMax) {
|
||
|
$tmp = $rMin;
|
||
|
$rMin = $rMax;
|
||
|
$rMax = $tmp;
|
||
|
}
|
||
|
$a = 0;
|
||
|
$b = 2;
|
||
|
|
||
|
$i = 0;
|
||
|
while ((($b - $a) > Functions::PRECISION) && ($i++ < self::MAX_ITERATIONS)) {
|
||
|
$guess = ($a + $b) / 2;
|
||
|
$result = self::BETADIST($guess, $alpha, $beta);
|
||
|
if (($result == $probability) || ($result == 0)) {
|
||
|
$b = $a;
|
||
|
} elseif ($result > $probability) {
|
||
|
$b = $guess;
|
||
|
} else {
|
||
|
$a = $guess;
|
||
|
}
|
||
|
}
|
||
|
if ($i == self::MAX_ITERATIONS) {
|
||
|
return Functions::NA();
|
||
|
}
|
||
|
|
||
|
return round($rMin + $guess * ($rMax - $rMin), 12);
|
||
|
}
|
||
|
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* BINOMDIST.
|
||
|
*
|
||
|
* Returns the individual term binomial distribution probability. Use BINOMDIST in problems with
|
||
|
* a fixed number of tests or trials, when the outcomes of any trial are only success or failure,
|
||
|
* when trials are independent, and when the probability of success is constant throughout the
|
||
|
* experiment. For example, BINOMDIST can calculate the probability that two of the next three
|
||
|
* babies born are male.
|
||
|
*
|
||
|
* @param float $value Number of successes in trials
|
||
|
* @param float $trials Number of trials
|
||
|
* @param float $probability Probability of success on each trial
|
||
|
* @param bool $cumulative
|
||
|
*
|
||
|
* @return float|string
|
||
|
*/
|
||
|
public static function BINOMDIST($value, $trials, $probability, $cumulative)
|
||
|
{
|
||
|
$value = Functions::flattenSingleValue($value);
|
||
|
$trials = Functions::flattenSingleValue($trials);
|
||
|
$probability = Functions::flattenSingleValue($probability);
|
||
|
|
||
|
if ((is_numeric($value)) && (is_numeric($trials)) && (is_numeric($probability))) {
|
||
|
$value = floor($value);
|
||
|
$trials = floor($trials);
|
||
|
if (($value < 0) || ($value > $trials)) {
|
||
|
return Functions::NAN();
|
||
|
}
|
||
|
if (($probability < 0) || ($probability > 1)) {
|
||
|
return Functions::NAN();
|
||
|
}
|
||
|
if ((is_numeric($cumulative)) || (is_bool($cumulative))) {
|
||
|
if ($cumulative) {
|
||
|
$summer = 0;
|
||
|
for ($i = 0; $i <= $value; ++$i) {
|
||
|
$summer += MathTrig::COMBIN($trials, $i) * $probability ** $i * (1 - $probability) ** ($trials - $i);
|
||
|
}
|
||
|
|
||
|
return $summer;
|
||
|
}
|
||
|
|
||
|
return MathTrig::COMBIN($trials, $value) * $probability ** $value * (1 - $probability) ** ($trials - $value);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* CHIDIST.
|
||
|
*
|
||
|
* Returns the one-tailed probability of the chi-squared distribution.
|
||
|
*
|
||
|
* @param float $value Value for the function
|
||
|
* @param float $degrees degrees of freedom
|
||
|
*
|
||
|
* @return float|string
|
||
|
*/
|
||
|
public static function CHIDIST($value, $degrees)
|
||
|
{
|
||
|
$value = Functions::flattenSingleValue($value);
|
||
|
$degrees = Functions::flattenSingleValue($degrees);
|
||
|
|
||
|
if ((is_numeric($value)) && (is_numeric($degrees))) {
|
||
|
$degrees = floor($degrees);
|
||
|
if ($degrees < 1) {
|
||
|
return Functions::NAN();
|
||
|
}
|
||
|
if ($value < 0) {
|
||
|
if (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_GNUMERIC) {
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
return Functions::NAN();
|
||
|
}
|
||
|
|
||
|
return 1 - (self::incompleteGamma($degrees / 2, $value / 2) / self::gamma($degrees / 2));
|
||
|
}
|
||
|
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* CHIINV.
|
||
|
*
|
||
|
* Returns the one-tailed probability of the chi-squared distribution.
|
||
|
*
|
||
|
* @param float $probability Probability for the function
|
||
|
* @param float $degrees degrees of freedom
|
||
|
*
|
||
|
* @return float|string
|
||
|
*/
|
||
|
public static function CHIINV($probability, $degrees)
|
||
|
{
|
||
|
$probability = Functions::flattenSingleValue($probability);
|
||
|
$degrees = Functions::flattenSingleValue($degrees);
|
||
|
|
||
|
if ((is_numeric($probability)) && (is_numeric($degrees))) {
|
||
|
$degrees = floor($degrees);
|
||
|
|
||
|
$xLo = 100;
|
||
|
$xHi = 0;
|
||
|
|
||
|
$x = $xNew = 1;
|
||
|
$dx = 1;
|
||
|
$i = 0;
|
||
|
|
||
|
while ((abs($dx) > Functions::PRECISION) && ($i++ < self::MAX_ITERATIONS)) {
|
||
|
// Apply Newton-Raphson step
|
||
|
$result = 1 - (self::incompleteGamma($degrees / 2, $x / 2) / self::gamma($degrees / 2));
|
||
|
$error = $result - $probability;
|
||
|
if ($error == 0.0) {
|
||
|
$dx = 0;
|
||
|
} elseif ($error < 0.0) {
|
||
|
$xLo = $x;
|
||
|
} else {
|
||
|
$xHi = $x;
|
||
|
}
|
||
|
// Avoid division by zero
|
||
|
if ($result != 0.0) {
|
||
|
$dx = $error / $result;
|
||
|
$xNew = $x - $dx;
|
||
|
}
|
||
|
// If the NR fails to converge (which for example may be the
|
||
|
// case if the initial guess is too rough) we apply a bisection
|
||
|
// step to determine a more narrow interval around the root.
|
||
|
if (($xNew < $xLo) || ($xNew > $xHi) || ($result == 0.0)) {
|
||
|
$xNew = ($xLo + $xHi) / 2;
|
||
|
$dx = $xNew - $x;
|
||
|
}
|
||
|
$x = $xNew;
|
||
|
}
|
||
|
if ($i == self::MAX_ITERATIONS) {
|
||
|
return Functions::NA();
|
||
|
}
|
||
|
|
||
|
return round($x, 12);
|
||
|
}
|
||
|
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* CONFIDENCE.
|
||
|
*
|
||
|
* Returns the confidence interval for a population mean
|
||
|
*
|
||
|
* @param float $alpha
|
||
|
* @param float $stdDev Standard Deviation
|
||
|
* @param float $size
|
||
|
*
|
||
|
* @return float|string
|
||
|
*/
|
||
|
public static function CONFIDENCE($alpha, $stdDev, $size)
|
||
|
{
|
||
|
$alpha = Functions::flattenSingleValue($alpha);
|
||
|
$stdDev = Functions::flattenSingleValue($stdDev);
|
||
|
$size = Functions::flattenSingleValue($size);
|
||
|
|
||
|
if ((is_numeric($alpha)) && (is_numeric($stdDev)) && (is_numeric($size))) {
|
||
|
$size = floor($size);
|
||
|
if (($alpha <= 0) || ($alpha >= 1)) {
|
||
|
return Functions::NAN();
|
||
|
}
|
||
|
if (($stdDev <= 0) || ($size < 1)) {
|
||
|
return Functions::NAN();
|
||
|
}
|
||
|
|
||
|
return self::NORMSINV(1 - $alpha / 2) * $stdDev / sqrt($size);
|
||
|
}
|
||
|
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* CORREL.
|
||
|
*
|
||
|
* Returns covariance, the average of the products of deviations for each data point pair.
|
||
|
*
|
||
|
* @param mixed $yValues array of mixed Data Series Y
|
||
|
* @param null|mixed $xValues array of mixed Data Series X
|
||
|
*
|
||
|
* @return float|string
|
||
|
*/
|
||
|
public static function CORREL($yValues, $xValues = null)
|
||
|
{
|
||
|
if (($xValues === null) || (!is_array($yValues)) || (!is_array($xValues))) {
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
if (!self::checkTrendArrays($yValues, $xValues)) {
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
$yValueCount = count($yValues);
|
||
|
$xValueCount = count($xValues);
|
||
|
|
||
|
if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
|
||
|
return Functions::NA();
|
||
|
} elseif ($yValueCount == 1) {
|
||
|
return Functions::DIV0();
|
||
|
}
|
||
|
|
||
|
$bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);
|
||
|
|
||
|
return $bestFitLinear->getCorrelation();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* COUNT.
|
||
|
*
|
||
|
* Counts the number of cells that contain numbers within the list of arguments
|
||
|
*
|
||
|
* Excel Function:
|
||
|
* COUNT(value1[,value2[, ...]])
|
||
|
*
|
||
|
* @param mixed ...$args Data values
|
||
|
*
|
||
|
* @return int
|
||
|
*/
|
||
|
public static function COUNT(...$args)
|
||
|
{
|
||
|
$returnValue = 0;
|
||
|
|
||
|
// Loop through arguments
|
||
|
$aArgs = Functions::flattenArrayIndexed($args);
|
||
|
foreach ($aArgs as $k => $arg) {
|
||
|
$arg = self::testAcceptedBoolean($arg, $k);
|
||
|
// Is it a numeric value?
|
||
|
// Strings containing numeric values are only counted if they are string literals (not cell values)
|
||
|
// and then only in MS Excel and in Open Office, not in Gnumeric
|
||
|
if (self::isAcceptedCountable($arg, $k)) {
|
||
|
++$returnValue;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return $returnValue;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* COUNTA.
|
||
|
*
|
||
|
* Counts the number of cells that are not empty within the list of arguments
|
||
|
*
|
||
|
* Excel Function:
|
||
|
* COUNTA(value1[,value2[, ...]])
|
||
|
*
|
||
|
* @param mixed ...$args Data values
|
||
|
*
|
||
|
* @return int
|
||
|
*/
|
||
|
public static function COUNTA(...$args)
|
||
|
{
|
||
|
$returnValue = 0;
|
||
|
|
||
|
// Loop through arguments
|
||
|
$aArgs = Functions::flattenArrayIndexed($args);
|
||
|
foreach ($aArgs as $k => $arg) {
|
||
|
// Nulls are counted if literals, but not if cell values
|
||
|
if ($arg !== null || (!Functions::isCellValue($k))) {
|
||
|
++$returnValue;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return $returnValue;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* COUNTBLANK.
|
||
|
*
|
||
|
* Counts the number of empty cells within the list of arguments
|
||
|
*
|
||
|
* Excel Function:
|
||
|
* COUNTBLANK(value1[,value2[, ...]])
|
||
|
*
|
||
|
* @param mixed ...$args Data values
|
||
|
*
|
||
|
* @return int
|
||
|
*/
|
||
|
public static function COUNTBLANK(...$args)
|
||
|
{
|
||
|
$returnValue = 0;
|
||
|
|
||
|
// Loop through arguments
|
||
|
$aArgs = Functions::flattenArray($args);
|
||
|
foreach ($aArgs as $arg) {
|
||
|
// Is it a blank cell?
|
||
|
if (($arg === null) || ((is_string($arg)) && ($arg == ''))) {
|
||
|
++$returnValue;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return $returnValue;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* COUNTIF.
|
||
|
*
|
||
|
* Counts the number of cells that contain numbers within the list of arguments
|
||
|
*
|
||
|
* Excel Function:
|
||
|
* COUNTIF(value1[,value2[, ...]],condition)
|
||
|
*
|
||
|
* @param mixed $aArgs Data values
|
||
|
* @param string $condition the criteria that defines which cells will be counted
|
||
|
*
|
||
|
* @return int
|
||
|
*/
|
||
|
public static function COUNTIF($aArgs, $condition)
|
||
|
{
|
||
|
$returnValue = 0;
|
||
|
|
||
|
$aArgs = Functions::flattenArray($aArgs);
|
||
|
$condition = Functions::ifCondition($condition);
|
||
|
$conditionIsNumeric = strpos($condition, '"') === false;
|
||
|
// Loop through arguments
|
||
|
foreach ($aArgs as $arg) {
|
||
|
if (!is_numeric($arg)) {
|
||
|
if ($conditionIsNumeric) {
|
||
|
continue;
|
||
|
}
|
||
|
$arg = Calculation::wrapResult(strtoupper($arg));
|
||
|
} elseif (!$conditionIsNumeric) {
|
||
|
continue;
|
||
|
}
|
||
|
$testCondition = '=' . $arg . $condition;
|
||
|
if (Calculation::getInstance()->_calculateFormulaValue($testCondition)) {
|
||
|
// Is it a value within our criteria
|
||
|
++$returnValue;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return $returnValue;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* COUNTIFS.
|
||
|
*
|
||
|
* Counts the number of cells that contain numbers within the list of arguments
|
||
|
*
|
||
|
* Excel Function:
|
||
|
* COUNTIFS(criteria_range1, criteria1, [criteria_range2, criteria2]…)
|
||
|
*
|
||
|
* @param mixed $args Criterias
|
||
|
*
|
||
|
* @return int
|
||
|
*/
|
||
|
public static function COUNTIFS(...$args)
|
||
|
{
|
||
|
$arrayList = $args;
|
||
|
|
||
|
// Return value
|
||
|
$returnValue = 0;
|
||
|
|
||
|
if (empty($arrayList)) {
|
||
|
return $returnValue;
|
||
|
}
|
||
|
|
||
|
$aArgsArray = [];
|
||
|
$conditions = [];
|
||
|
|
||
|
while (count($arrayList) > 0) {
|
||
|
$aArgsArray[] = Functions::flattenArray(array_shift($arrayList));
|
||
|
$conditions[] = Functions::ifCondition(array_shift($arrayList));
|
||
|
}
|
||
|
|
||
|
// Loop through each arg and see if arguments and conditions are true
|
||
|
foreach (array_keys($aArgsArray[0]) as $index) {
|
||
|
$valid = true;
|
||
|
|
||
|
foreach ($conditions as $cidx => $condition) {
|
||
|
$conditionIsNumeric = strpos($condition, '"') === false;
|
||
|
$arg = $aArgsArray[$cidx][$index];
|
||
|
|
||
|
// Loop through arguments
|
||
|
if (!is_numeric($arg)) {
|
||
|
if ($conditionIsNumeric) {
|
||
|
$valid = false;
|
||
|
|
||
|
break; // if false found, don't need to check other conditions
|
||
|
}
|
||
|
$arg = Calculation::wrapResult(strtoupper($arg));
|
||
|
} elseif (!$conditionIsNumeric) {
|
||
|
$valid = false;
|
||
|
|
||
|
break; // if false found, don't need to check other conditions
|
||
|
}
|
||
|
$testCondition = '=' . $arg . $condition;
|
||
|
if (!Calculation::getInstance()->_calculateFormulaValue($testCondition)) {
|
||
|
// Is not a value within our criteria
|
||
|
$valid = false;
|
||
|
|
||
|
break; // if false found, don't need to check other conditions
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if ($valid) {
|
||
|
++$returnValue;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Return
|
||
|
return $returnValue;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* COVAR.
|
||
|
*
|
||
|
* Returns covariance, the average of the products of deviations for each data point pair.
|
||
|
*
|
||
|
* @param mixed $yValues array of mixed Data Series Y
|
||
|
* @param mixed $xValues array of mixed Data Series X
|
||
|
*
|
||
|
* @return float|string
|
||
|
*/
|
||
|
public static function COVAR($yValues, $xValues)
|
||
|
{
|
||
|
if (!self::checkTrendArrays($yValues, $xValues)) {
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
$yValueCount = count($yValues);
|
||
|
$xValueCount = count($xValues);
|
||
|
|
||
|
if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
|
||
|
return Functions::NA();
|
||
|
} elseif ($yValueCount == 1) {
|
||
|
return Functions::DIV0();
|
||
|
}
|
||
|
|
||
|
$bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);
|
||
|
|
||
|
return $bestFitLinear->getCovariance();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* CRITBINOM.
|
||
|
*
|
||
|
* Returns the smallest value for which the cumulative binomial distribution is greater
|
||
|
* than or equal to a criterion value
|
||
|
*
|
||
|
* See https://support.microsoft.com/en-us/help/828117/ for details of the algorithm used
|
||
|
*
|
||
|
* @param float $trials number of Bernoulli trials
|
||
|
* @param float $probability probability of a success on each trial
|
||
|
* @param float $alpha criterion value
|
||
|
*
|
||
|
* @return int|string
|
||
|
*
|
||
|
* @TODO Warning. This implementation differs from the algorithm detailed on the MS
|
||
|
* web site in that $CumPGuessMinus1 = $CumPGuess - 1 rather than $CumPGuess - $PGuess
|
||
|
* This eliminates a potential endless loop error, but may have an adverse affect on the
|
||
|
* accuracy of the function (although all my tests have so far returned correct results).
|
||
|
*/
|
||
|
public static function CRITBINOM($trials, $probability, $alpha)
|
||
|
{
|
||
|
$trials = floor(Functions::flattenSingleValue($trials));
|
||
|
$probability = Functions::flattenSingleValue($probability);
|
||
|
$alpha = Functions::flattenSingleValue($alpha);
|
||
|
|
||
|
if ((is_numeric($trials)) && (is_numeric($probability)) && (is_numeric($alpha))) {
|
||
|
$trials = (int) $trials;
|
||
|
if ($trials < 0) {
|
||
|
return Functions::NAN();
|
||
|
} elseif (($probability < 0.0) || ($probability > 1.0)) {
|
||
|
return Functions::NAN();
|
||
|
} elseif (($alpha < 0.0) || ($alpha > 1.0)) {
|
||
|
return Functions::NAN();
|
||
|
}
|
||
|
|
||
|
if ($alpha <= 0.5) {
|
||
|
$t = sqrt(log(1 / ($alpha * $alpha)));
|
||
|
$trialsApprox = 0 - ($t + (2.515517 + 0.802853 * $t + 0.010328 * $t * $t) / (1 + 1.432788 * $t + 0.189269 * $t * $t + 0.001308 * $t * $t * $t));
|
||
|
} else {
|
||
|
$t = sqrt(log(1 / (1 - $alpha) ** 2));
|
||
|
$trialsApprox = $t - (2.515517 + 0.802853 * $t + 0.010328 * $t * $t) / (1 + 1.432788 * $t + 0.189269 * $t * $t + 0.001308 * $t * $t * $t);
|
||
|
}
|
||
|
|
||
|
$Guess = floor($trials * $probability + $trialsApprox * sqrt($trials * $probability * (1 - $probability)));
|
||
|
if ($Guess < 0) {
|
||
|
$Guess = 0;
|
||
|
} elseif ($Guess > $trials) {
|
||
|
$Guess = $trials;
|
||
|
}
|
||
|
|
||
|
$TotalUnscaledProbability = $UnscaledPGuess = $UnscaledCumPGuess = 0.0;
|
||
|
$EssentiallyZero = 10e-12;
|
||
|
|
||
|
$m = floor($trials * $probability);
|
||
|
++$TotalUnscaledProbability;
|
||
|
if ($m == $Guess) {
|
||
|
++$UnscaledPGuess;
|
||
|
}
|
||
|
if ($m <= $Guess) {
|
||
|
++$UnscaledCumPGuess;
|
||
|
}
|
||
|
|
||
|
$PreviousValue = 1;
|
||
|
$Done = false;
|
||
|
$k = $m + 1;
|
||
|
while ((!$Done) && ($k <= $trials)) {
|
||
|
$CurrentValue = $PreviousValue * ($trials - $k + 1) * $probability / ($k * (1 - $probability));
|
||
|
$TotalUnscaledProbability += $CurrentValue;
|
||
|
if ($k == $Guess) {
|
||
|
$UnscaledPGuess += $CurrentValue;
|
||
|
}
|
||
|
if ($k <= $Guess) {
|
||
|
$UnscaledCumPGuess += $CurrentValue;
|
||
|
}
|
||
|
if ($CurrentValue <= $EssentiallyZero) {
|
||
|
$Done = true;
|
||
|
}
|
||
|
$PreviousValue = $CurrentValue;
|
||
|
++$k;
|
||
|
}
|
||
|
|
||
|
$PreviousValue = 1;
|
||
|
$Done = false;
|
||
|
$k = $m - 1;
|
||
|
while ((!$Done) && ($k >= 0)) {
|
||
|
$CurrentValue = $PreviousValue * $k + 1 * (1 - $probability) / (($trials - $k) * $probability);
|
||
|
$TotalUnscaledProbability += $CurrentValue;
|
||
|
if ($k == $Guess) {
|
||
|
$UnscaledPGuess += $CurrentValue;
|
||
|
}
|
||
|
if ($k <= $Guess) {
|
||
|
$UnscaledCumPGuess += $CurrentValue;
|
||
|
}
|
||
|
if ($CurrentValue <= $EssentiallyZero) {
|
||
|
$Done = true;
|
||
|
}
|
||
|
$PreviousValue = $CurrentValue;
|
||
|
--$k;
|
||
|
}
|
||
|
|
||
|
$PGuess = $UnscaledPGuess / $TotalUnscaledProbability;
|
||
|
$CumPGuess = $UnscaledCumPGuess / $TotalUnscaledProbability;
|
||
|
|
||
|
$CumPGuessMinus1 = $CumPGuess - 1;
|
||
|
|
||
|
while (true) {
|
||
|
if (($CumPGuessMinus1 < $alpha) && ($CumPGuess >= $alpha)) {
|
||
|
return $Guess;
|
||
|
} elseif (($CumPGuessMinus1 < $alpha) && ($CumPGuess < $alpha)) {
|
||
|
$PGuessPlus1 = $PGuess * ($trials - $Guess) * $probability / $Guess / (1 - $probability);
|
||
|
$CumPGuessMinus1 = $CumPGuess;
|
||
|
$CumPGuess = $CumPGuess + $PGuessPlus1;
|
||
|
$PGuess = $PGuessPlus1;
|
||
|
++$Guess;
|
||
|
} elseif (($CumPGuessMinus1 >= $alpha) && ($CumPGuess >= $alpha)) {
|
||
|
$PGuessMinus1 = $PGuess * $Guess * (1 - $probability) / ($trials - $Guess + 1) / $probability;
|
||
|
$CumPGuess = $CumPGuessMinus1;
|
||
|
$CumPGuessMinus1 = $CumPGuessMinus1 - $PGuess;
|
||
|
$PGuess = $PGuessMinus1;
|
||
|
--$Guess;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* DEVSQ.
|
||
|
*
|
||
|
* Returns the sum of squares of deviations of data points from their sample mean.
|
||
|
*
|
||
|
* Excel Function:
|
||
|
* DEVSQ(value1[,value2[, ...]])
|
||
|
*
|
||
|
* @param mixed ...$args Data values
|
||
|
*
|
||
|
* @return float|string
|
||
|
*/
|
||
|
public static function DEVSQ(...$args)
|
||
|
{
|
||
|
$aArgs = Functions::flattenArrayIndexed($args);
|
||
|
|
||
|
// Return value
|
||
|
$returnValue = null;
|
||
|
|
||
|
$aMean = self::AVERAGE($aArgs);
|
||
|
if ($aMean != Functions::DIV0()) {
|
||
|
$aCount = -1;
|
||
|
foreach ($aArgs as $k => $arg) {
|
||
|
// Is it a numeric value?
|
||
|
if (
|
||
|
(is_bool($arg)) &&
|
||
|
((!Functions::isCellValue($k)) ||
|
||
|
(Functions::getCompatibilityMode() == Functions::COMPATIBILITY_OPENOFFICE))
|
||
|
) {
|
||
|
$arg = (int) $arg;
|
||
|
}
|
||
|
if ((is_numeric($arg)) && (!is_string($arg))) {
|
||
|
if ($returnValue === null) {
|
||
|
$returnValue = ($arg - $aMean) ** 2;
|
||
|
} else {
|
||
|
$returnValue += ($arg - $aMean) ** 2;
|
||
|
}
|
||
|
++$aCount;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Return
|
||
|
if ($returnValue === null) {
|
||
|
return Functions::NAN();
|
||
|
}
|
||
|
|
||
|
return $returnValue;
|
||
|
}
|
||
|
|
||
|
return Functions::NA();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* EXPONDIST.
|
||
|
*
|
||
|
* Returns the exponential distribution. Use EXPONDIST to model the time between events,
|
||
|
* such as how long an automated bank teller takes to deliver cash. For example, you can
|
||
|
* use EXPONDIST to determine the probability that the process takes at most 1 minute.
|
||
|
*
|
||
|
* @param float $value Value of the function
|
||
|
* @param float $lambda The parameter value
|
||
|
* @param bool $cumulative
|
||
|
*
|
||
|
* @return float|string
|
||
|
*/
|
||
|
public static function EXPONDIST($value, $lambda, $cumulative)
|
||
|
{
|
||
|
$value = Functions::flattenSingleValue($value);
|
||
|
$lambda = Functions::flattenSingleValue($lambda);
|
||
|
$cumulative = Functions::flattenSingleValue($cumulative);
|
||
|
|
||
|
if ((is_numeric($value)) && (is_numeric($lambda))) {
|
||
|
if (($value < 0) || ($lambda < 0)) {
|
||
|
return Functions::NAN();
|
||
|
}
|
||
|
if ((is_numeric($cumulative)) || (is_bool($cumulative))) {
|
||
|
if ($cumulative) {
|
||
|
return 1 - exp(0 - $value * $lambda);
|
||
|
}
|
||
|
|
||
|
return $lambda * exp(0 - $value * $lambda);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
|
||
|
private static function betaFunction($a, $b)
|
||
|
{
|
||
|
return (self::gamma($a) * self::gamma($b)) / self::gamma($a + $b);
|
||
|
}
|
||
|
|
||
|
private static function regularizedIncompleteBeta($value, $a, $b)
|
||
|
{
|
||
|
return self::incompleteBeta($value, $a, $b) / self::betaFunction($a, $b);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* F.DIST.
|
||
|
*
|
||
|
* Returns the F probability distribution.
|
||
|
* You can use this function to determine whether two data sets have different degrees of diversity.
|
||
|
* For example, you can examine the test scores of men and women entering high school, and determine
|
||
|
* if the variability in the females is different from that found in the males.
|
||
|
*
|
||
|
* @param float $value Value of the function
|
||
|
* @param int $u The numerator degrees of freedom
|
||
|
* @param int $v The denominator degrees of freedom
|
||
|
* @param bool $cumulative If cumulative is TRUE, F.DIST returns the cumulative distribution function;
|
||
|
* if FALSE, it returns the probability density function.
|
||
|
*
|
||
|
* @return float|string
|
||
|
*/
|
||
|
public static function FDIST2($value, $u, $v, $cumulative)
|
||
|
{
|
||
|
$value = Functions::flattenSingleValue($value);
|
||
|
$u = Functions::flattenSingleValue($u);
|
||
|
$v = Functions::flattenSingleValue($v);
|
||
|
$cumulative = Functions::flattenSingleValue($cumulative);
|
||
|
|
||
|
if (is_numeric($value) && is_numeric($u) && is_numeric($v)) {
|
||
|
if ($value < 0 || $u < 1 || $v < 1) {
|
||
|
return Functions::NAN();
|
||
|
}
|
||
|
|
||
|
$cumulative = (bool) $cumulative;
|
||
|
$u = (int) $u;
|
||
|
$v = (int) $v;
|
||
|
|
||
|
if ($cumulative) {
|
||
|
$adjustedValue = ($u * $value) / ($u * $value + $v);
|
||
|
|
||
|
return self::incompleteBeta($adjustedValue, $u / 2, $v / 2);
|
||
|
}
|
||
|
|
||
|
return (self::gamma(($v + $u) / 2) / (self::gamma($u / 2) * self::gamma($v / 2))) *
|
||
|
(($u / $v) ** ($u / 2)) *
|
||
|
(($value ** (($u - 2) / 2)) / ((1 + ($u / $v) * $value) ** (($u + $v) / 2)));
|
||
|
}
|
||
|
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* FISHER.
|
||
|
*
|
||
|
* Returns the Fisher transformation at x. This transformation produces a function that
|
||
|
* is normally distributed rather than skewed. Use this function to perform hypothesis
|
||
|
* testing on the correlation coefficient.
|
||
|
*
|
||
|
* @param float $value
|
||
|
*
|
||
|
* @return float|string
|
||
|
*/
|
||
|
public static function FISHER($value)
|
||
|
{
|
||
|
$value = Functions::flattenSingleValue($value);
|
||
|
|
||
|
if (is_numeric($value)) {
|
||
|
if (($value <= -1) || ($value >= 1)) {
|
||
|
return Functions::NAN();
|
||
|
}
|
||
|
|
||
|
return 0.5 * log((1 + $value) / (1 - $value));
|
||
|
}
|
||
|
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* FISHERINV.
|
||
|
*
|
||
|
* Returns the inverse of the Fisher transformation. Use this transformation when
|
||
|
* analyzing correlations between ranges or arrays of data. If y = FISHER(x), then
|
||
|
* FISHERINV(y) = x.
|
||
|
*
|
||
|
* @param float $value
|
||
|
*
|
||
|
* @return float|string
|
||
|
*/
|
||
|
public static function FISHERINV($value)
|
||
|
{
|
||
|
$value = Functions::flattenSingleValue($value);
|
||
|
|
||
|
if (is_numeric($value)) {
|
||
|
return (exp(2 * $value) - 1) / (exp(2 * $value) + 1);
|
||
|
}
|
||
|
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* FORECAST.
|
||
|
*
|
||
|
* Calculates, or predicts, a future value by using existing values. The predicted value is a y-value for a given x-value.
|
||
|
*
|
||
|
* @param float $xValue Value of X for which we want to find Y
|
||
|
* @param mixed $yValues array of mixed Data Series Y
|
||
|
* @param mixed $xValues of mixed Data Series X
|
||
|
*
|
||
|
* @return bool|float|string
|
||
|
*/
|
||
|
public static function FORECAST($xValue, $yValues, $xValues)
|
||
|
{
|
||
|
$xValue = Functions::flattenSingleValue($xValue);
|
||
|
if (!is_numeric($xValue)) {
|
||
|
return Functions::VALUE();
|
||
|
} elseif (!self::checkTrendArrays($yValues, $xValues)) {
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
$yValueCount = count($yValues);
|
||
|
$xValueCount = count($xValues);
|
||
|
|
||
|
if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
|
||
|
return Functions::NA();
|
||
|
} elseif ($yValueCount == 1) {
|
||
|
return Functions::DIV0();
|
||
|
}
|
||
|
|
||
|
$bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);
|
||
|
|
||
|
return $bestFitLinear->getValueOfYForX($xValue);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* GAMMA.
|
||
|
*
|
||
|
* Return the gamma function value.
|
||
|
*
|
||
|
* @param float $value
|
||
|
*
|
||
|
* @return float|string The result, or a string containing an error
|
||
|
*/
|
||
|
public static function GAMMAFunction($value)
|
||
|
{
|
||
|
$value = Functions::flattenSingleValue($value);
|
||
|
if (!is_numeric($value)) {
|
||
|
return Functions::VALUE();
|
||
|
} elseif ((((int) $value) == ((float) $value)) && $value <= 0.0) {
|
||
|
return Functions::NAN();
|
||
|
}
|
||
|
|
||
|
return self::gamma($value);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* GAMMADIST.
|
||
|
*
|
||
|
* Returns the gamma distribution.
|
||
|
*
|
||
|
* @param float $value Value at which you want to evaluate the distribution
|
||
|
* @param float $a Parameter to the distribution
|
||
|
* @param float $b Parameter to the distribution
|
||
|
* @param bool $cumulative
|
||
|
*
|
||
|
* @return float|string
|
||
|
*/
|
||
|
public static function GAMMADIST($value, $a, $b, $cumulative)
|
||
|
{
|
||
|
$value = Functions::flattenSingleValue($value);
|
||
|
$a = Functions::flattenSingleValue($a);
|
||
|
$b = Functions::flattenSingleValue($b);
|
||
|
|
||
|
if ((is_numeric($value)) && (is_numeric($a)) && (is_numeric($b))) {
|
||
|
if (($value < 0) || ($a <= 0) || ($b <= 0)) {
|
||
|
return Functions::NAN();
|
||
|
}
|
||
|
if ((is_numeric($cumulative)) || (is_bool($cumulative))) {
|
||
|
if ($cumulative) {
|
||
|
return self::incompleteGamma($a, $value / $b) / self::gamma($a);
|
||
|
}
|
||
|
|
||
|
return (1 / ($b ** $a * self::gamma($a))) * $value ** ($a - 1) * exp(0 - ($value / $b));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* GAMMAINV.
|
||
|
*
|
||
|
* Returns the inverse of the Gamma distribution.
|
||
|
*
|
||
|
* @param float $probability Probability at which you want to evaluate the distribution
|
||
|
* @param float $alpha Parameter to the distribution
|
||
|
* @param float $beta Parameter to the distribution
|
||
|
*
|
||
|
* @return float|string
|
||
|
*/
|
||
|
public static function GAMMAINV($probability, $alpha, $beta)
|
||
|
{
|
||
|
$probability = Functions::flattenSingleValue($probability);
|
||
|
$alpha = Functions::flattenSingleValue($alpha);
|
||
|
$beta = Functions::flattenSingleValue($beta);
|
||
|
|
||
|
if ((is_numeric($probability)) && (is_numeric($alpha)) && (is_numeric($beta))) {
|
||
|
if (($alpha <= 0) || ($beta <= 0) || ($probability < 0) || ($probability > 1)) {
|
||
|
return Functions::NAN();
|
||
|
}
|
||
|
|
||
|
$xLo = 0;
|
||
|
$xHi = $alpha * $beta * 5;
|
||
|
|
||
|
$x = $xNew = 1;
|
||
|
$dx = 1024;
|
||
|
$i = 0;
|
||
|
|
||
|
while ((abs($dx) > Functions::PRECISION) && ($i++ < self::MAX_ITERATIONS)) {
|
||
|
// Apply Newton-Raphson step
|
||
|
$error = self::GAMMADIST($x, $alpha, $beta, true) - $probability;
|
||
|
if ($error < 0.0) {
|
||
|
$xLo = $x;
|
||
|
} else {
|
||
|
$xHi = $x;
|
||
|
}
|
||
|
$pdf = self::GAMMADIST($x, $alpha, $beta, false);
|
||
|
// Avoid division by zero
|
||
|
if ($pdf != 0.0) {
|
||
|
$dx = $error / $pdf;
|
||
|
$xNew = $x - $dx;
|
||
|
}
|
||
|
// If the NR fails to converge (which for example may be the
|
||
|
// case if the initial guess is too rough) we apply a bisection
|
||
|
// step to determine a more narrow interval around the root.
|
||
|
if (($xNew < $xLo) || ($xNew > $xHi) || ($pdf == 0.0)) {
|
||
|
$xNew = ($xLo + $xHi) / 2;
|
||
|
$dx = $xNew - $x;
|
||
|
}
|
||
|
$x = $xNew;
|
||
|
}
|
||
|
if ($i == self::MAX_ITERATIONS) {
|
||
|
return Functions::NA();
|
||
|
}
|
||
|
|
||
|
return $x;
|
||
|
}
|
||
|
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* GAMMALN.
|
||
|
*
|
||
|
* Returns the natural logarithm of the gamma function.
|
||
|
*
|
||
|
* @param float $value
|
||
|
*
|
||
|
* @return float|string
|
||
|
*/
|
||
|
public static function GAMMALN($value)
|
||
|
{
|
||
|
$value = Functions::flattenSingleValue($value);
|
||
|
|
||
|
if (is_numeric($value)) {
|
||
|
if ($value <= 0) {
|
||
|
return Functions::NAN();
|
||
|
}
|
||
|
|
||
|
return log(self::gamma($value));
|
||
|
}
|
||
|
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* GAUSS.
|
||
|
*
|
||
|
* Calculates the probability that a member of a standard normal population will fall between
|
||
|
* the mean and z standard deviations from the mean.
|
||
|
*
|
||
|
* @param float $value
|
||
|
*
|
||
|
* @return float|string The result, or a string containing an error
|
||
|
*/
|
||
|
public static function GAUSS($value)
|
||
|
{
|
||
|
$value = Functions::flattenSingleValue($value);
|
||
|
if (!is_numeric($value)) {
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
|
||
|
return self::NORMDIST($value, 0, 1, true) - 0.5;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* GEOMEAN.
|
||
|
*
|
||
|
* Returns the geometric mean of an array or range of positive data. For example, you
|
||
|
* can use GEOMEAN to calculate average growth rate given compound interest with
|
||
|
* variable rates.
|
||
|
*
|
||
|
* Excel Function:
|
||
|
* GEOMEAN(value1[,value2[, ...]])
|
||
|
*
|
||
|
* @param mixed ...$args Data values
|
||
|
*
|
||
|
* @return float|string
|
||
|
*/
|
||
|
public static function GEOMEAN(...$args)
|
||
|
{
|
||
|
$aArgs = Functions::flattenArray($args);
|
||
|
|
||
|
$aMean = MathTrig::PRODUCT($aArgs);
|
||
|
if (is_numeric($aMean) && ($aMean > 0)) {
|
||
|
$aCount = self::COUNT($aArgs);
|
||
|
if (self::MIN($aArgs) > 0) {
|
||
|
return $aMean ** (1 / $aCount);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return Functions::NAN();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* GROWTH.
|
||
|
*
|
||
|
* Returns values along a predicted exponential Trend
|
||
|
*
|
||
|
* @param mixed[] $yValues Data Series Y
|
||
|
* @param mixed[] $xValues Data Series X
|
||
|
* @param mixed[] $newValues Values of X for which we want to find Y
|
||
|
* @param bool $const a logical value specifying whether to force the intersect to equal 0
|
||
|
*
|
||
|
* @return array of float
|
||
|
*/
|
||
|
public static function GROWTH($yValues, $xValues = [], $newValues = [], $const = true)
|
||
|
{
|
||
|
$yValues = Functions::flattenArray($yValues);
|
||
|
$xValues = Functions::flattenArray($xValues);
|
||
|
$newValues = Functions::flattenArray($newValues);
|
||
|
$const = ($const === null) ? true : (bool) Functions::flattenSingleValue($const);
|
||
|
|
||
|
$bestFitExponential = Trend::calculate(Trend::TREND_EXPONENTIAL, $yValues, $xValues, $const);
|
||
|
if (empty($newValues)) {
|
||
|
$newValues = $bestFitExponential->getXValues();
|
||
|
}
|
||
|
|
||
|
$returnArray = [];
|
||
|
foreach ($newValues as $xValue) {
|
||
|
$returnArray[0][] = $bestFitExponential->getValueOfYForX($xValue);
|
||
|
}
|
||
|
|
||
|
return $returnArray;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* HARMEAN.
|
||
|
*
|
||
|
* Returns the harmonic mean of a data set. The harmonic mean is the reciprocal of the
|
||
|
* arithmetic mean of reciprocals.
|
||
|
*
|
||
|
* Excel Function:
|
||
|
* HARMEAN(value1[,value2[, ...]])
|
||
|
*
|
||
|
* @param mixed ...$args Data values
|
||
|
*
|
||
|
* @return float|string
|
||
|
*/
|
||
|
public static function HARMEAN(...$args)
|
||
|
{
|
||
|
// Return value
|
||
|
$returnValue = 0;
|
||
|
|
||
|
// Loop through arguments
|
||
|
$aArgs = Functions::flattenArray($args);
|
||
|
if (self::MIN($aArgs) < 0) {
|
||
|
return Functions::NAN();
|
||
|
}
|
||
|
$aCount = 0;
|
||
|
foreach ($aArgs as $arg) {
|
||
|
// Is it a numeric value?
|
||
|
if ((is_numeric($arg)) && (!is_string($arg))) {
|
||
|
if ($arg <= 0) {
|
||
|
return Functions::NAN();
|
||
|
}
|
||
|
$returnValue += (1 / $arg);
|
||
|
++$aCount;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Return
|
||
|
if ($aCount > 0) {
|
||
|
return 1 / ($returnValue / $aCount);
|
||
|
}
|
||
|
|
||
|
return Functions::NA();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* HYPGEOMDIST.
|
||
|
*
|
||
|
* Returns the hypergeometric distribution. HYPGEOMDIST returns the probability of a given number of
|
||
|
* sample successes, given the sample size, population successes, and population size.
|
||
|
*
|
||
|
* @param float $sampleSuccesses Number of successes in the sample
|
||
|
* @param float $sampleNumber Size of the sample
|
||
|
* @param float $populationSuccesses Number of successes in the population
|
||
|
* @param float $populationNumber Population size
|
||
|
*
|
||
|
* @return float|string
|
||
|
*/
|
||
|
public static function HYPGEOMDIST($sampleSuccesses, $sampleNumber, $populationSuccesses, $populationNumber)
|
||
|
{
|
||
|
$sampleSuccesses = Functions::flattenSingleValue($sampleSuccesses);
|
||
|
$sampleNumber = Functions::flattenSingleValue($sampleNumber);
|
||
|
$populationSuccesses = Functions::flattenSingleValue($populationSuccesses);
|
||
|
$populationNumber = Functions::flattenSingleValue($populationNumber);
|
||
|
|
||
|
if ((is_numeric($sampleSuccesses)) && (is_numeric($sampleNumber)) && (is_numeric($populationSuccesses)) && (is_numeric($populationNumber))) {
|
||
|
$sampleSuccesses = floor($sampleSuccesses);
|
||
|
$sampleNumber = floor($sampleNumber);
|
||
|
$populationSuccesses = floor($populationSuccesses);
|
||
|
$populationNumber = floor($populationNumber);
|
||
|
|
||
|
if (($sampleSuccesses < 0) || ($sampleSuccesses > $sampleNumber) || ($sampleSuccesses > $populationSuccesses)) {
|
||
|
return Functions::NAN();
|
||
|
}
|
||
|
if (($sampleNumber <= 0) || ($sampleNumber > $populationNumber)) {
|
||
|
return Functions::NAN();
|
||
|
}
|
||
|
if (($populationSuccesses <= 0) || ($populationSuccesses > $populationNumber)) {
|
||
|
return Functions::NAN();
|
||
|
}
|
||
|
|
||
|
return MathTrig::COMBIN($populationSuccesses, $sampleSuccesses) *
|
||
|
MathTrig::COMBIN($populationNumber - $populationSuccesses, $sampleNumber - $sampleSuccesses) /
|
||
|
MathTrig::COMBIN($populationNumber, $sampleNumber);
|
||
|
}
|
||
|
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* INTERCEPT.
|
||
|
*
|
||
|
* Calculates the point at which a line will intersect the y-axis by using existing x-values and y-values.
|
||
|
*
|
||
|
* @param mixed[] $yValues Data Series Y
|
||
|
* @param mixed[] $xValues Data Series X
|
||
|
*
|
||
|
* @return float|string
|
||
|
*/
|
||
|
public static function INTERCEPT($yValues, $xValues)
|
||
|
{
|
||
|
if (!self::checkTrendArrays($yValues, $xValues)) {
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
$yValueCount = count($yValues);
|
||
|
$xValueCount = count($xValues);
|
||
|
|
||
|
if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
|
||
|
return Functions::NA();
|
||
|
} elseif ($yValueCount == 1) {
|
||
|
return Functions::DIV0();
|
||
|
}
|
||
|
|
||
|
$bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);
|
||
|
|
||
|
return $bestFitLinear->getIntersect();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* KURT.
|
||
|
*
|
||
|
* Returns the kurtosis of a data set. Kurtosis characterizes the relative peakedness
|
||
|
* or flatness of a distribution compared with the normal distribution. Positive
|
||
|
* kurtosis indicates a relatively peaked distribution. Negative kurtosis indicates a
|
||
|
* relatively flat distribution.
|
||
|
*
|
||
|
* @param array ...$args Data Series
|
||
|
*
|
||
|
* @return float|string
|
||
|
*/
|
||
|
public static function KURT(...$args)
|
||
|
{
|
||
|
$aArgs = Functions::flattenArrayIndexed($args);
|
||
|
$mean = self::AVERAGE($aArgs);
|
||
|
$stdDev = self::STDEV($aArgs);
|
||
|
|
||
|
if ($stdDev > 0) {
|
||
|
$count = $summer = 0;
|
||
|
// Loop through arguments
|
||
|
foreach ($aArgs as $k => $arg) {
|
||
|
if (
|
||
|
(is_bool($arg)) &&
|
||
|
(!Functions::isMatrixValue($k))
|
||
|
) {
|
||
|
} else {
|
||
|
// Is it a numeric value?
|
||
|
if ((is_numeric($arg)) && (!is_string($arg))) {
|
||
|
$summer += (($arg - $mean) / $stdDev) ** 4;
|
||
|
++$count;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Return
|
||
|
if ($count > 3) {
|
||
|
return $summer * ($count * ($count + 1) / (($count - 1) * ($count - 2) * ($count - 3))) - (3 * ($count - 1) ** 2 / (($count - 2) * ($count - 3)));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return Functions::DIV0();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* LARGE.
|
||
|
*
|
||
|
* Returns the nth largest value in a data set. You can use this function to
|
||
|
* select a value based on its relative standing.
|
||
|
*
|
||
|
* Excel Function:
|
||
|
* LARGE(value1[,value2[, ...]],entry)
|
||
|
*
|
||
|
* @param mixed $args Data values
|
||
|
*
|
||
|
* @return float|string The result, or a string containing an error
|
||
|
*/
|
||
|
public static function LARGE(...$args)
|
||
|
{
|
||
|
$aArgs = Functions::flattenArray($args);
|
||
|
$entry = array_pop($aArgs);
|
||
|
|
||
|
if ((is_numeric($entry)) && (!is_string($entry))) {
|
||
|
$entry = (int) floor($entry);
|
||
|
|
||
|
// Calculate
|
||
|
$mArgs = [];
|
||
|
foreach ($aArgs as $arg) {
|
||
|
// Is it a numeric value?
|
||
|
if ((is_numeric($arg)) && (!is_string($arg))) {
|
||
|
$mArgs[] = $arg;
|
||
|
}
|
||
|
}
|
||
|
$count = self::COUNT($mArgs);
|
||
|
--$entry;
|
||
|
if (($entry < 0) || ($entry >= $count) || ($count == 0)) {
|
||
|
return Functions::NAN();
|
||
|
}
|
||
|
rsort($mArgs);
|
||
|
|
||
|
return $mArgs[$entry];
|
||
|
}
|
||
|
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* LINEST.
|
||
|
*
|
||
|
* Calculates the statistics for a line by using the "least squares" method to calculate a straight line that best fits your data,
|
||
|
* and then returns an array that describes the line.
|
||
|
*
|
||
|
* @param mixed[] $yValues Data Series Y
|
||
|
* @param null|mixed[] $xValues Data Series X
|
||
|
* @param bool $const a logical value specifying whether to force the intersect to equal 0
|
||
|
* @param bool $stats a logical value specifying whether to return additional regression statistics
|
||
|
*
|
||
|
* @return array|int|string The result, or a string containing an error
|
||
|
*/
|
||
|
public static function LINEST($yValues, $xValues = null, $const = true, $stats = false)
|
||
|
{
|
||
|
$const = ($const === null) ? true : (bool) Functions::flattenSingleValue($const);
|
||
|
$stats = ($stats === null) ? false : (bool) Functions::flattenSingleValue($stats);
|
||
|
if ($xValues === null) {
|
||
|
$xValues = range(1, count(Functions::flattenArray($yValues)));
|
||
|
}
|
||
|
|
||
|
if (!self::checkTrendArrays($yValues, $xValues)) {
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
$yValueCount = count($yValues);
|
||
|
$xValueCount = count($xValues);
|
||
|
|
||
|
if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
|
||
|
return Functions::NA();
|
||
|
} elseif ($yValueCount == 1) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
$bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues, $const);
|
||
|
if ($stats) {
|
||
|
return [
|
||
|
[
|
||
|
$bestFitLinear->getSlope(),
|
||
|
$bestFitLinear->getSlopeSE(),
|
||
|
$bestFitLinear->getGoodnessOfFit(),
|
||
|
$bestFitLinear->getF(),
|
||
|
$bestFitLinear->getSSRegression(),
|
||
|
],
|
||
|
[
|
||
|
$bestFitLinear->getIntersect(),
|
||
|
$bestFitLinear->getIntersectSE(),
|
||
|
$bestFitLinear->getStdevOfResiduals(),
|
||
|
$bestFitLinear->getDFResiduals(),
|
||
|
$bestFitLinear->getSSResiduals(),
|
||
|
],
|
||
|
];
|
||
|
}
|
||
|
|
||
|
return [
|
||
|
$bestFitLinear->getSlope(),
|
||
|
$bestFitLinear->getIntersect(),
|
||
|
];
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* LOGEST.
|
||
|
*
|
||
|
* Calculates an exponential curve that best fits the X and Y data series,
|
||
|
* and then returns an array that describes the line.
|
||
|
*
|
||
|
* @param mixed[] $yValues Data Series Y
|
||
|
* @param null|mixed[] $xValues Data Series X
|
||
|
* @param bool $const a logical value specifying whether to force the intersect to equal 0
|
||
|
* @param bool $stats a logical value specifying whether to return additional regression statistics
|
||
|
*
|
||
|
* @return array|int|string The result, or a string containing an error
|
||
|
*/
|
||
|
public static function LOGEST($yValues, $xValues = null, $const = true, $stats = false)
|
||
|
{
|
||
|
$const = ($const === null) ? true : (bool) Functions::flattenSingleValue($const);
|
||
|
$stats = ($stats === null) ? false : (bool) Functions::flattenSingleValue($stats);
|
||
|
if ($xValues === null) {
|
||
|
$xValues = range(1, count(Functions::flattenArray($yValues)));
|
||
|
}
|
||
|
|
||
|
if (!self::checkTrendArrays($yValues, $xValues)) {
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
$yValueCount = count($yValues);
|
||
|
$xValueCount = count($xValues);
|
||
|
|
||
|
foreach ($yValues as $value) {
|
||
|
if ($value <= 0.0) {
|
||
|
return Functions::NAN();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
|
||
|
return Functions::NA();
|
||
|
} elseif ($yValueCount == 1) {
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
$bestFitExponential = Trend::calculate(Trend::TREND_EXPONENTIAL, $yValues, $xValues, $const);
|
||
|
if ($stats) {
|
||
|
return [
|
||
|
[
|
||
|
$bestFitExponential->getSlope(),
|
||
|
$bestFitExponential->getSlopeSE(),
|
||
|
$bestFitExponential->getGoodnessOfFit(),
|
||
|
$bestFitExponential->getF(),
|
||
|
$bestFitExponential->getSSRegression(),
|
||
|
],
|
||
|
[
|
||
|
$bestFitExponential->getIntersect(),
|
||
|
$bestFitExponential->getIntersectSE(),
|
||
|
$bestFitExponential->getStdevOfResiduals(),
|
||
|
$bestFitExponential->getDFResiduals(),
|
||
|
$bestFitExponential->getSSResiduals(),
|
||
|
],
|
||
|
];
|
||
|
}
|
||
|
|
||
|
return [
|
||
|
$bestFitExponential->getSlope(),
|
||
|
$bestFitExponential->getIntersect(),
|
||
|
];
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* LOGINV.
|
||
|
*
|
||
|
* Returns the inverse of the normal cumulative distribution
|
||
|
*
|
||
|
* @param float $probability
|
||
|
* @param float $mean
|
||
|
* @param float $stdDev
|
||
|
*
|
||
|
* @return float|string The result, or a string containing an error
|
||
|
*
|
||
|
* @TODO Try implementing P J Acklam's refinement algorithm for greater
|
||
|
* accuracy if I can get my head round the mathematics
|
||
|
* (as described at) http://home.online.no/~pjacklam/notes/invnorm/
|
||
|
*/
|
||
|
public static function LOGINV($probability, $mean, $stdDev)
|
||
|
{
|
||
|
$probability = Functions::flattenSingleValue($probability);
|
||
|
$mean = Functions::flattenSingleValue($mean);
|
||
|
$stdDev = Functions::flattenSingleValue($stdDev);
|
||
|
|
||
|
if ((is_numeric($probability)) && (is_numeric($mean)) && (is_numeric($stdDev))) {
|
||
|
if (($probability < 0) || ($probability > 1) || ($stdDev <= 0)) {
|
||
|
return Functions::NAN();
|
||
|
}
|
||
|
|
||
|
return exp($mean + $stdDev * self::NORMSINV($probability));
|
||
|
}
|
||
|
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* LOGNORMDIST.
|
||
|
*
|
||
|
* Returns the cumulative lognormal distribution of x, where ln(x) is normally distributed
|
||
|
* with parameters mean and standard_dev.
|
||
|
*
|
||
|
* @param float $value
|
||
|
* @param float $mean
|
||
|
* @param float $stdDev
|
||
|
*
|
||
|
* @return float|string The result, or a string containing an error
|
||
|
*/
|
||
|
public static function LOGNORMDIST($value, $mean, $stdDev)
|
||
|
{
|
||
|
$value = Functions::flattenSingleValue($value);
|
||
|
$mean = Functions::flattenSingleValue($mean);
|
||
|
$stdDev = Functions::flattenSingleValue($stdDev);
|
||
|
|
||
|
if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) {
|
||
|
if (($value <= 0) || ($stdDev <= 0)) {
|
||
|
return Functions::NAN();
|
||
|
}
|
||
|
|
||
|
return self::NORMSDIST((log($value) - $mean) / $stdDev);
|
||
|
}
|
||
|
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* LOGNORM.DIST.
|
||
|
*
|
||
|
* Returns the lognormal distribution of x, where ln(x) is normally distributed
|
||
|
* with parameters mean and standard_dev.
|
||
|
*
|
||
|
* @param float $value
|
||
|
* @param float $mean
|
||
|
* @param float $stdDev
|
||
|
* @param bool $cumulative
|
||
|
*
|
||
|
* @return float|string The result, or a string containing an error
|
||
|
*/
|
||
|
public static function LOGNORMDIST2($value, $mean, $stdDev, $cumulative = false)
|
||
|
{
|
||
|
$value = Functions::flattenSingleValue($value);
|
||
|
$mean = Functions::flattenSingleValue($mean);
|
||
|
$stdDev = Functions::flattenSingleValue($stdDev);
|
||
|
$cumulative = (bool) Functions::flattenSingleValue($cumulative);
|
||
|
|
||
|
if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) {
|
||
|
if (($value <= 0) || ($stdDev <= 0)) {
|
||
|
return Functions::NAN();
|
||
|
}
|
||
|
|
||
|
if ($cumulative === true) {
|
||
|
return self::NORMSDIST2((log($value) - $mean) / $stdDev, true);
|
||
|
}
|
||
|
|
||
|
return (1 / (sqrt(2 * M_PI) * $stdDev * $value)) *
|
||
|
exp(0 - ((log($value) - $mean) ** 2 / (2 * $stdDev ** 2)));
|
||
|
}
|
||
|
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* MAX.
|
||
|
*
|
||
|
* MAX returns the value of the element of the values passed that has the highest value,
|
||
|
* with negative numbers considered smaller than positive numbers.
|
||
|
*
|
||
|
* Excel Function:
|
||
|
* MAX(value1[,value2[, ...]])
|
||
|
*
|
||
|
* @param mixed ...$args Data values
|
||
|
*
|
||
|
* @return float
|
||
|
*/
|
||
|
public static function MAX(...$args)
|
||
|
{
|
||
|
$returnValue = null;
|
||
|
|
||
|
// Loop through arguments
|
||
|
$aArgs = Functions::flattenArray($args);
|
||
|
foreach ($aArgs as $arg) {
|
||
|
// Is it a numeric value?
|
||
|
if ((is_numeric($arg)) && (!is_string($arg))) {
|
||
|
if (($returnValue === null) || ($arg > $returnValue)) {
|
||
|
$returnValue = $arg;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if ($returnValue === null) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
return $returnValue;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* MAXA.
|
||
|
*
|
||
|
* Returns the greatest value in a list of arguments, including numbers, text, and logical values
|
||
|
*
|
||
|
* Excel Function:
|
||
|
* MAXA(value1[,value2[, ...]])
|
||
|
*
|
||
|
* @param mixed ...$args Data values
|
||
|
*
|
||
|
* @return float
|
||
|
*/
|
||
|
public static function MAXA(...$args)
|
||
|
{
|
||
|
$returnValue = null;
|
||
|
|
||
|
// Loop through arguments
|
||
|
$aArgs = Functions::flattenArray($args);
|
||
|
foreach ($aArgs as $arg) {
|
||
|
// Is it a numeric value?
|
||
|
if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) {
|
||
|
if (is_bool($arg)) {
|
||
|
$arg = (int) $arg;
|
||
|
} elseif (is_string($arg)) {
|
||
|
$arg = 0;
|
||
|
}
|
||
|
if (($returnValue === null) || ($arg > $returnValue)) {
|
||
|
$returnValue = $arg;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if ($returnValue === null) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
return $returnValue;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* MAXIFS.
|
||
|
*
|
||
|
* Counts the maximum value within a range of cells that contain numbers within the list of arguments
|
||
|
*
|
||
|
* Excel Function:
|
||
|
* MAXIFS(max_range, criteria_range1, criteria1, [criteria_range2, criteria2], ...)
|
||
|
*
|
||
|
* @param mixed $args Data range and criterias
|
||
|
*
|
||
|
* @return float
|
||
|
*/
|
||
|
public static function MAXIFS(...$args)
|
||
|
{
|
||
|
$arrayList = $args;
|
||
|
|
||
|
// Return value
|
||
|
$returnValue = null;
|
||
|
|
||
|
$maxArgs = Functions::flattenArray(array_shift($arrayList));
|
||
|
$aArgsArray = [];
|
||
|
$conditions = [];
|
||
|
|
||
|
while (count($arrayList) > 0) {
|
||
|
$aArgsArray[] = Functions::flattenArray(array_shift($arrayList));
|
||
|
$conditions[] = Functions::ifCondition(array_shift($arrayList));
|
||
|
}
|
||
|
|
||
|
// Loop through each arg and see if arguments and conditions are true
|
||
|
foreach ($maxArgs as $index => $value) {
|
||
|
$valid = true;
|
||
|
|
||
|
foreach ($conditions as $cidx => $condition) {
|
||
|
$arg = $aArgsArray[$cidx][$index];
|
||
|
|
||
|
// Loop through arguments
|
||
|
if (!is_numeric($arg)) {
|
||
|
$arg = Calculation::wrapResult(strtoupper($arg));
|
||
|
}
|
||
|
$testCondition = '=' . $arg . $condition;
|
||
|
if (!Calculation::getInstance()->_calculateFormulaValue($testCondition)) {
|
||
|
// Is not a value within our criteria
|
||
|
$valid = false;
|
||
|
|
||
|
break; // if false found, don't need to check other conditions
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if ($valid) {
|
||
|
$returnValue = $returnValue === null ? $value : max($value, $returnValue);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Return
|
||
|
return $returnValue;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* MEDIAN.
|
||
|
*
|
||
|
* Returns the median of the given numbers. The median is the number in the middle of a set of numbers.
|
||
|
*
|
||
|
* Excel Function:
|
||
|
* MEDIAN(value1[,value2[, ...]])
|
||
|
*
|
||
|
* @param mixed ...$args Data values
|
||
|
*
|
||
|
* @return float|string The result, or a string containing an error
|
||
|
*/
|
||
|
public static function MEDIAN(...$args)
|
||
|
{
|
||
|
$returnValue = Functions::NAN();
|
||
|
|
||
|
$mArgs = [];
|
||
|
// Loop through arguments
|
||
|
$aArgs = Functions::flattenArray($args);
|
||
|
foreach ($aArgs as $arg) {
|
||
|
// Is it a numeric value?
|
||
|
if ((is_numeric($arg)) && (!is_string($arg))) {
|
||
|
$mArgs[] = $arg;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
$mValueCount = count($mArgs);
|
||
|
if ($mValueCount > 0) {
|
||
|
sort($mArgs, SORT_NUMERIC);
|
||
|
$mValueCount = $mValueCount / 2;
|
||
|
if ($mValueCount == floor($mValueCount)) {
|
||
|
$returnValue = ($mArgs[$mValueCount--] + $mArgs[$mValueCount]) / 2;
|
||
|
} else {
|
||
|
$mValueCount = floor($mValueCount);
|
||
|
$returnValue = $mArgs[$mValueCount];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return $returnValue;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* MIN.
|
||
|
*
|
||
|
* MIN returns the value of the element of the values passed that has the smallest value,
|
||
|
* with negative numbers considered smaller than positive numbers.
|
||
|
*
|
||
|
* Excel Function:
|
||
|
* MIN(value1[,value2[, ...]])
|
||
|
*
|
||
|
* @param mixed ...$args Data values
|
||
|
*
|
||
|
* @return float
|
||
|
*/
|
||
|
public static function MIN(...$args)
|
||
|
{
|
||
|
$returnValue = null;
|
||
|
|
||
|
// Loop through arguments
|
||
|
$aArgs = Functions::flattenArray($args);
|
||
|
foreach ($aArgs as $arg) {
|
||
|
// Is it a numeric value?
|
||
|
if ((is_numeric($arg)) && (!is_string($arg))) {
|
||
|
if (($returnValue === null) || ($arg < $returnValue)) {
|
||
|
$returnValue = $arg;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if ($returnValue === null) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
return $returnValue;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* MINA.
|
||
|
*
|
||
|
* Returns the smallest value in a list of arguments, including numbers, text, and logical values
|
||
|
*
|
||
|
* Excel Function:
|
||
|
* MINA(value1[,value2[, ...]])
|
||
|
*
|
||
|
* @param mixed ...$args Data values
|
||
|
*
|
||
|
* @return float
|
||
|
*/
|
||
|
public static function MINA(...$args)
|
||
|
{
|
||
|
$returnValue = null;
|
||
|
|
||
|
// Loop through arguments
|
||
|
$aArgs = Functions::flattenArray($args);
|
||
|
foreach ($aArgs as $arg) {
|
||
|
// Is it a numeric value?
|
||
|
if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) {
|
||
|
if (is_bool($arg)) {
|
||
|
$arg = (int) $arg;
|
||
|
} elseif (is_string($arg)) {
|
||
|
$arg = 0;
|
||
|
}
|
||
|
if (($returnValue === null) || ($arg < $returnValue)) {
|
||
|
$returnValue = $arg;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if ($returnValue === null) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
return $returnValue;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* MINIFS.
|
||
|
*
|
||
|
* Returns the minimum value within a range of cells that contain numbers within the list of arguments
|
||
|
*
|
||
|
* Excel Function:
|
||
|
* MINIFS(min_range, criteria_range1, criteria1, [criteria_range2, criteria2], ...)
|
||
|
*
|
||
|
* @param mixed $args Data range and criterias
|
||
|
*
|
||
|
* @return float
|
||
|
*/
|
||
|
public static function MINIFS(...$args)
|
||
|
{
|
||
|
$arrayList = $args;
|
||
|
|
||
|
// Return value
|
||
|
$returnValue = null;
|
||
|
|
||
|
$minArgs = Functions::flattenArray(array_shift($arrayList));
|
||
|
$aArgsArray = [];
|
||
|
$conditions = [];
|
||
|
|
||
|
while (count($arrayList) > 0) {
|
||
|
$aArgsArray[] = Functions::flattenArray(array_shift($arrayList));
|
||
|
$conditions[] = Functions::ifCondition(array_shift($arrayList));
|
||
|
}
|
||
|
|
||
|
// Loop through each arg and see if arguments and conditions are true
|
||
|
foreach ($minArgs as $index => $value) {
|
||
|
$valid = true;
|
||
|
|
||
|
foreach ($conditions as $cidx => $condition) {
|
||
|
$arg = $aArgsArray[$cidx][$index];
|
||
|
|
||
|
// Loop through arguments
|
||
|
if (!is_numeric($arg)) {
|
||
|
$arg = Calculation::wrapResult(strtoupper($arg));
|
||
|
}
|
||
|
$testCondition = '=' . $arg . $condition;
|
||
|
if (!Calculation::getInstance()->_calculateFormulaValue($testCondition)) {
|
||
|
// Is not a value within our criteria
|
||
|
$valid = false;
|
||
|
|
||
|
break; // if false found, don't need to check other conditions
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if ($valid) {
|
||
|
$returnValue = $returnValue === null ? $value : min($value, $returnValue);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Return
|
||
|
return $returnValue;
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Special variant of array_count_values that isn't limited to strings and integers,
|
||
|
// but can work with floating point numbers as values
|
||
|
//
|
||
|
private static function modeCalc($data)
|
||
|
{
|
||
|
$frequencyArray = [];
|
||
|
$index = 0;
|
||
|
$maxfreq = 0;
|
||
|
$maxfreqkey = '';
|
||
|
$maxfreqdatum = '';
|
||
|
foreach ($data as $datum) {
|
||
|
$found = false;
|
||
|
++$index;
|
||
|
foreach ($frequencyArray as $key => $value) {
|
||
|
if ((string) $value['value'] == (string) $datum) {
|
||
|
++$frequencyArray[$key]['frequency'];
|
||
|
$freq = $frequencyArray[$key]['frequency'];
|
||
|
if ($freq > $maxfreq) {
|
||
|
$maxfreq = $freq;
|
||
|
$maxfreqkey = $key;
|
||
|
$maxfreqdatum = $datum;
|
||
|
} elseif ($freq == $maxfreq) {
|
||
|
if ($frequencyArray[$key]['index'] < $frequencyArray[$maxfreqkey]['index']) {
|
||
|
$maxfreqkey = $key;
|
||
|
$maxfreqdatum = $datum;
|
||
|
}
|
||
|
}
|
||
|
$found = true;
|
||
|
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (!$found) {
|
||
|
$frequencyArray[] = [
|
||
|
'value' => $datum,
|
||
|
'frequency' => 1,
|
||
|
'index' => $index,
|
||
|
];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if ($maxfreq <= 1) {
|
||
|
return Functions::NA();
|
||
|
}
|
||
|
|
||
|
return $maxfreqdatum;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* MODE.
|
||
|
*
|
||
|
* Returns the most frequently occurring, or repetitive, value in an array or range of data
|
||
|
*
|
||
|
* Excel Function:
|
||
|
* MODE(value1[,value2[, ...]])
|
||
|
*
|
||
|
* @param mixed ...$args Data values
|
||
|
*
|
||
|
* @return float|string The result, or a string containing an error
|
||
|
*/
|
||
|
public static function MODE(...$args)
|
||
|
{
|
||
|
$returnValue = Functions::NA();
|
||
|
|
||
|
// Loop through arguments
|
||
|
$aArgs = Functions::flattenArray($args);
|
||
|
|
||
|
$mArgs = [];
|
||
|
foreach ($aArgs as $arg) {
|
||
|
// Is it a numeric value?
|
||
|
if ((is_numeric($arg)) && (!is_string($arg))) {
|
||
|
$mArgs[] = $arg;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!empty($mArgs)) {
|
||
|
return self::modeCalc($mArgs);
|
||
|
}
|
||
|
|
||
|
return $returnValue;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* NEGBINOMDIST.
|
||
|
*
|
||
|
* Returns the negative binomial distribution. NEGBINOMDIST returns the probability that
|
||
|
* there will be number_f failures before the number_s-th success, when the constant
|
||
|
* probability of a success is probability_s. This function is similar to the binomial
|
||
|
* distribution, except that the number of successes is fixed, and the number of trials is
|
||
|
* variable. Like the binomial, trials are assumed to be independent.
|
||
|
*
|
||
|
* @param float $failures Number of Failures
|
||
|
* @param float $successes Threshold number of Successes
|
||
|
* @param float $probability Probability of success on each trial
|
||
|
*
|
||
|
* @return float|string The result, or a string containing an error
|
||
|
*/
|
||
|
public static function NEGBINOMDIST($failures, $successes, $probability)
|
||
|
{
|
||
|
$failures = floor(Functions::flattenSingleValue($failures));
|
||
|
$successes = floor(Functions::flattenSingleValue($successes));
|
||
|
$probability = Functions::flattenSingleValue($probability);
|
||
|
|
||
|
if ((is_numeric($failures)) && (is_numeric($successes)) && (is_numeric($probability))) {
|
||
|
if (($failures < 0) || ($successes < 1)) {
|
||
|
return Functions::NAN();
|
||
|
} elseif (($probability < 0) || ($probability > 1)) {
|
||
|
return Functions::NAN();
|
||
|
}
|
||
|
if (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_GNUMERIC) {
|
||
|
if (($failures + $successes - 1) <= 0) {
|
||
|
return Functions::NAN();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return (MathTrig::COMBIN($failures + $successes - 1, $successes - 1)) * ($probability ** $successes) * ((1 - $probability) ** $failures);
|
||
|
}
|
||
|
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* NORMDIST.
|
||
|
*
|
||
|
* Returns the normal distribution for the specified mean and standard deviation. This
|
||
|
* function has a very wide range of applications in statistics, including hypothesis
|
||
|
* testing.
|
||
|
*
|
||
|
* @param float $value
|
||
|
* @param float $mean Mean Value
|
||
|
* @param float $stdDev Standard Deviation
|
||
|
* @param bool $cumulative
|
||
|
*
|
||
|
* @return float|string The result, or a string containing an error
|
||
|
*/
|
||
|
public static function NORMDIST($value, $mean, $stdDev, $cumulative)
|
||
|
{
|
||
|
$value = Functions::flattenSingleValue($value);
|
||
|
$mean = Functions::flattenSingleValue($mean);
|
||
|
$stdDev = Functions::flattenSingleValue($stdDev);
|
||
|
|
||
|
if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) {
|
||
|
if ($stdDev < 0) {
|
||
|
return Functions::NAN();
|
||
|
}
|
||
|
if ((is_numeric($cumulative)) || (is_bool($cumulative))) {
|
||
|
if ($cumulative) {
|
||
|
return 0.5 * (1 + Engineering::erfVal(($value - $mean) / ($stdDev * sqrt(2))));
|
||
|
}
|
||
|
|
||
|
return (1 / (self::SQRT2PI * $stdDev)) * exp(0 - (($value - $mean) ** 2 / (2 * ($stdDev * $stdDev))));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* NORMINV.
|
||
|
*
|
||
|
* Returns the inverse of the normal cumulative distribution for the specified mean and standard deviation.
|
||
|
*
|
||
|
* @param float $probability
|
||
|
* @param float $mean Mean Value
|
||
|
* @param float $stdDev Standard Deviation
|
||
|
*
|
||
|
* @return float|string The result, or a string containing an error
|
||
|
*/
|
||
|
public static function NORMINV($probability, $mean, $stdDev)
|
||
|
{
|
||
|
$probability = Functions::flattenSingleValue($probability);
|
||
|
$mean = Functions::flattenSingleValue($mean);
|
||
|
$stdDev = Functions::flattenSingleValue($stdDev);
|
||
|
|
||
|
if ((is_numeric($probability)) && (is_numeric($mean)) && (is_numeric($stdDev))) {
|
||
|
if (($probability < 0) || ($probability > 1)) {
|
||
|
return Functions::NAN();
|
||
|
}
|
||
|
if ($stdDev < 0) {
|
||
|
return Functions::NAN();
|
||
|
}
|
||
|
|
||
|
return (self::inverseNcdf($probability) * $stdDev) + $mean;
|
||
|
}
|
||
|
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* NORMSDIST.
|
||
|
*
|
||
|
* Returns the standard normal cumulative distribution function. The distribution has
|
||
|
* a mean of 0 (zero) and a standard deviation of one. Use this function in place of a
|
||
|
* table of standard normal curve areas.
|
||
|
*
|
||
|
* @param float $value
|
||
|
*
|
||
|
* @return float|string The result, or a string containing an error
|
||
|
*/
|
||
|
public static function NORMSDIST($value)
|
||
|
{
|
||
|
$value = Functions::flattenSingleValue($value);
|
||
|
if (!is_numeric($value)) {
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
|
||
|
return self::NORMDIST($value, 0, 1, true);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* NORM.S.DIST.
|
||
|
*
|
||
|
* Returns the standard normal cumulative distribution function. The distribution has
|
||
|
* a mean of 0 (zero) and a standard deviation of one. Use this function in place of a
|
||
|
* table of standard normal curve areas.
|
||
|
*
|
||
|
* @param float $value
|
||
|
* @param bool $cumulative
|
||
|
*
|
||
|
* @return float|string The result, or a string containing an error
|
||
|
*/
|
||
|
public static function NORMSDIST2($value, $cumulative)
|
||
|
{
|
||
|
$value = Functions::flattenSingleValue($value);
|
||
|
if (!is_numeric($value)) {
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
$cumulative = (bool) Functions::flattenSingleValue($cumulative);
|
||
|
|
||
|
return self::NORMDIST($value, 0, 1, $cumulative);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* NORMSINV.
|
||
|
*
|
||
|
* Returns the inverse of the standard normal cumulative distribution
|
||
|
*
|
||
|
* @param float $value
|
||
|
*
|
||
|
* @return float|string The result, or a string containing an error
|
||
|
*/
|
||
|
public static function NORMSINV($value)
|
||
|
{
|
||
|
return self::NORMINV($value, 0, 1);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* PERCENTILE.
|
||
|
*
|
||
|
* Returns the nth percentile of values in a range..
|
||
|
*
|
||
|
* Excel Function:
|
||
|
* PERCENTILE(value1[,value2[, ...]],entry)
|
||
|
*
|
||
|
* @param mixed $args Data values
|
||
|
*
|
||
|
* @return float|string The result, or a string containing an error
|
||
|
*/
|
||
|
public static function PERCENTILE(...$args)
|
||
|
{
|
||
|
$aArgs = Functions::flattenArray($args);
|
||
|
|
||
|
// Calculate
|
||
|
$entry = array_pop($aArgs);
|
||
|
|
||
|
if ((is_numeric($entry)) && (!is_string($entry))) {
|
||
|
if (($entry < 0) || ($entry > 1)) {
|
||
|
return Functions::NAN();
|
||
|
}
|
||
|
$mArgs = [];
|
||
|
foreach ($aArgs as $arg) {
|
||
|
// Is it a numeric value?
|
||
|
if ((is_numeric($arg)) && (!is_string($arg))) {
|
||
|
$mArgs[] = $arg;
|
||
|
}
|
||
|
}
|
||
|
$mValueCount = count($mArgs);
|
||
|
if ($mValueCount > 0) {
|
||
|
sort($mArgs);
|
||
|
$count = self::COUNT($mArgs);
|
||
|
$index = $entry * ($count - 1);
|
||
|
$iBase = floor($index);
|
||
|
if ($index == $iBase) {
|
||
|
return $mArgs[$index];
|
||
|
}
|
||
|
$iNext = $iBase + 1;
|
||
|
$iProportion = $index - $iBase;
|
||
|
|
||
|
return $mArgs[$iBase] + (($mArgs[$iNext] - $mArgs[$iBase]) * $iProportion);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* PERCENTRANK.
|
||
|
*
|
||
|
* Returns the rank of a value in a data set as a percentage of the data set.
|
||
|
*
|
||
|
* @param float[] $valueSet An array of, or a reference to, a list of numbers
|
||
|
* @param int $value the number whose rank you want to find
|
||
|
* @param int $significance the number of significant digits for the returned percentage value
|
||
|
*
|
||
|
* @return float|string (string if result is an error)
|
||
|
*/
|
||
|
public static function PERCENTRANK($valueSet, $value, $significance = 3)
|
||
|
{
|
||
|
$valueSet = Functions::flattenArray($valueSet);
|
||
|
$value = Functions::flattenSingleValue($value);
|
||
|
$significance = ($significance === null) ? 3 : (int) Functions::flattenSingleValue($significance);
|
||
|
|
||
|
foreach ($valueSet as $key => $valueEntry) {
|
||
|
if (!is_numeric($valueEntry)) {
|
||
|
unset($valueSet[$key]);
|
||
|
}
|
||
|
}
|
||
|
sort($valueSet, SORT_NUMERIC);
|
||
|
$valueCount = count($valueSet);
|
||
|
if ($valueCount == 0) {
|
||
|
return Functions::NAN();
|
||
|
}
|
||
|
|
||
|
$valueAdjustor = $valueCount - 1;
|
||
|
if (($value < $valueSet[0]) || ($value > $valueSet[$valueAdjustor])) {
|
||
|
return Functions::NA();
|
||
|
}
|
||
|
|
||
|
$pos = array_search($value, $valueSet);
|
||
|
if ($pos === false) {
|
||
|
$pos = 0;
|
||
|
$testValue = $valueSet[0];
|
||
|
while ($testValue < $value) {
|
||
|
$testValue = $valueSet[++$pos];
|
||
|
}
|
||
|
--$pos;
|
||
|
$pos += (($value - $valueSet[$pos]) / ($testValue - $valueSet[$pos]));
|
||
|
}
|
||
|
|
||
|
return round($pos / $valueAdjustor, $significance);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* PERMUT.
|
||
|
*
|
||
|
* Returns the number of permutations for a given number of objects that can be
|
||
|
* selected from number objects. A permutation is any set or subset of objects or
|
||
|
* events where internal order is significant. Permutations are different from
|
||
|
* combinations, for which the internal order is not significant. Use this function
|
||
|
* for lottery-style probability calculations.
|
||
|
*
|
||
|
* @param int $numObjs Number of different objects
|
||
|
* @param int $numInSet Number of objects in each permutation
|
||
|
*
|
||
|
* @return int|string Number of permutations, or a string containing an error
|
||
|
*/
|
||
|
public static function PERMUT($numObjs, $numInSet)
|
||
|
{
|
||
|
$numObjs = Functions::flattenSingleValue($numObjs);
|
||
|
$numInSet = Functions::flattenSingleValue($numInSet);
|
||
|
|
||
|
if ((is_numeric($numObjs)) && (is_numeric($numInSet))) {
|
||
|
$numInSet = floor($numInSet);
|
||
|
if ($numObjs < $numInSet) {
|
||
|
return Functions::NAN();
|
||
|
}
|
||
|
|
||
|
return round(MathTrig::FACT($numObjs) / MathTrig::FACT($numObjs - $numInSet));
|
||
|
}
|
||
|
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* POISSON.
|
||
|
*
|
||
|
* Returns the Poisson distribution. A common application of the Poisson distribution
|
||
|
* is predicting the number of events over a specific time, such as the number of
|
||
|
* cars arriving at a toll plaza in 1 minute.
|
||
|
*
|
||
|
* @param float $value
|
||
|
* @param float $mean Mean Value
|
||
|
* @param bool $cumulative
|
||
|
*
|
||
|
* @return float|string The result, or a string containing an error
|
||
|
*/
|
||
|
public static function POISSON($value, $mean, $cumulative)
|
||
|
{
|
||
|
$value = Functions::flattenSingleValue($value);
|
||
|
$mean = Functions::flattenSingleValue($mean);
|
||
|
|
||
|
if ((is_numeric($value)) && (is_numeric($mean))) {
|
||
|
if (($value < 0) || ($mean <= 0)) {
|
||
|
return Functions::NAN();
|
||
|
}
|
||
|
if ((is_numeric($cumulative)) || (is_bool($cumulative))) {
|
||
|
if ($cumulative) {
|
||
|
$summer = 0;
|
||
|
$floor = floor($value);
|
||
|
for ($i = 0; $i <= $floor; ++$i) {
|
||
|
$summer += $mean ** $i / MathTrig::FACT($i);
|
||
|
}
|
||
|
|
||
|
return exp(0 - $mean) * $summer;
|
||
|
}
|
||
|
|
||
|
return (exp(0 - $mean) * $mean ** $value) / MathTrig::FACT($value);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* QUARTILE.
|
||
|
*
|
||
|
* Returns the quartile of a data set.
|
||
|
*
|
||
|
* Excel Function:
|
||
|
* QUARTILE(value1[,value2[, ...]],entry)
|
||
|
*
|
||
|
* @param mixed $args Data values
|
||
|
*
|
||
|
* @return float|string The result, or a string containing an error
|
||
|
*/
|
||
|
public static function QUARTILE(...$args)
|
||
|
{
|
||
|
$aArgs = Functions::flattenArray($args);
|
||
|
|
||
|
// Calculate
|
||
|
$entry = floor(array_pop($aArgs));
|
||
|
|
||
|
if ((is_numeric($entry)) && (!is_string($entry))) {
|
||
|
$entry /= 4;
|
||
|
if (($entry < 0) || ($entry > 1)) {
|
||
|
return Functions::NAN();
|
||
|
}
|
||
|
|
||
|
return self::PERCENTILE($aArgs, $entry);
|
||
|
}
|
||
|
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* RANK.
|
||
|
*
|
||
|
* Returns the rank of a number in a list of numbers.
|
||
|
*
|
||
|
* @param int $value the number whose rank you want to find
|
||
|
* @param float[] $valueSet An array of, or a reference to, a list of numbers
|
||
|
* @param int $order Order to sort the values in the value set
|
||
|
*
|
||
|
* @return float|string The result, or a string containing an error
|
||
|
*/
|
||
|
public static function RANK($value, $valueSet, $order = 0)
|
||
|
{
|
||
|
$value = Functions::flattenSingleValue($value);
|
||
|
$valueSet = Functions::flattenArray($valueSet);
|
||
|
$order = ($order === null) ? 0 : (int) Functions::flattenSingleValue($order);
|
||
|
|
||
|
foreach ($valueSet as $key => $valueEntry) {
|
||
|
if (!is_numeric($valueEntry)) {
|
||
|
unset($valueSet[$key]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if ($order == 0) {
|
||
|
rsort($valueSet, SORT_NUMERIC);
|
||
|
} else {
|
||
|
sort($valueSet, SORT_NUMERIC);
|
||
|
}
|
||
|
$pos = array_search($value, $valueSet);
|
||
|
if ($pos === false) {
|
||
|
return Functions::NA();
|
||
|
}
|
||
|
|
||
|
return ++$pos;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* RSQ.
|
||
|
*
|
||
|
* Returns the square of the Pearson product moment correlation coefficient through data points in known_y's and known_x's.
|
||
|
*
|
||
|
* @param mixed[] $yValues Data Series Y
|
||
|
* @param mixed[] $xValues Data Series X
|
||
|
*
|
||
|
* @return float|string The result, or a string containing an error
|
||
|
*/
|
||
|
public static function RSQ($yValues, $xValues)
|
||
|
{
|
||
|
if (!self::checkTrendArrays($yValues, $xValues)) {
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
$yValueCount = count($yValues);
|
||
|
$xValueCount = count($xValues);
|
||
|
|
||
|
if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
|
||
|
return Functions::NA();
|
||
|
} elseif ($yValueCount == 1) {
|
||
|
return Functions::DIV0();
|
||
|
}
|
||
|
|
||
|
$bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);
|
||
|
|
||
|
return $bestFitLinear->getGoodnessOfFit();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* SKEW.
|
||
|
*
|
||
|
* Returns the skewness of a distribution. Skewness characterizes the degree of asymmetry
|
||
|
* of a distribution around its mean. Positive skewness indicates a distribution with an
|
||
|
* asymmetric tail extending toward more positive values. Negative skewness indicates a
|
||
|
* distribution with an asymmetric tail extending toward more negative values.
|
||
|
*
|
||
|
* @param array ...$args Data Series
|
||
|
*
|
||
|
* @return float|string The result, or a string containing an error
|
||
|
*/
|
||
|
public static function SKEW(...$args)
|
||
|
{
|
||
|
$aArgs = Functions::flattenArrayIndexed($args);
|
||
|
$mean = self::AVERAGE($aArgs);
|
||
|
$stdDev = self::STDEV($aArgs);
|
||
|
|
||
|
$count = $summer = 0;
|
||
|
// Loop through arguments
|
||
|
foreach ($aArgs as $k => $arg) {
|
||
|
if (
|
||
|
(is_bool($arg)) &&
|
||
|
(!Functions::isMatrixValue($k))
|
||
|
) {
|
||
|
} else {
|
||
|
// Is it a numeric value?
|
||
|
if ((is_numeric($arg)) && (!is_string($arg))) {
|
||
|
$summer += (($arg - $mean) / $stdDev) ** 3;
|
||
|
++$count;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if ($count > 2) {
|
||
|
return $summer * ($count / (($count - 1) * ($count - 2)));
|
||
|
}
|
||
|
|
||
|
return Functions::DIV0();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* SLOPE.
|
||
|
*
|
||
|
* Returns the slope of the linear regression line through data points in known_y's and known_x's.
|
||
|
*
|
||
|
* @param mixed[] $yValues Data Series Y
|
||
|
* @param mixed[] $xValues Data Series X
|
||
|
*
|
||
|
* @return float|string The result, or a string containing an error
|
||
|
*/
|
||
|
public static function SLOPE($yValues, $xValues)
|
||
|
{
|
||
|
if (!self::checkTrendArrays($yValues, $xValues)) {
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
$yValueCount = count($yValues);
|
||
|
$xValueCount = count($xValues);
|
||
|
|
||
|
if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
|
||
|
return Functions::NA();
|
||
|
} elseif ($yValueCount == 1) {
|
||
|
return Functions::DIV0();
|
||
|
}
|
||
|
|
||
|
$bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);
|
||
|
|
||
|
return $bestFitLinear->getSlope();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* SMALL.
|
||
|
*
|
||
|
* Returns the nth smallest value in a data set. You can use this function to
|
||
|
* select a value based on its relative standing.
|
||
|
*
|
||
|
* Excel Function:
|
||
|
* SMALL(value1[,value2[, ...]],entry)
|
||
|
*
|
||
|
* @param mixed $args Data values
|
||
|
*
|
||
|
* @return float|string The result, or a string containing an error
|
||
|
*/
|
||
|
public static function SMALL(...$args)
|
||
|
{
|
||
|
$aArgs = Functions::flattenArray($args);
|
||
|
|
||
|
// Calculate
|
||
|
$entry = array_pop($aArgs);
|
||
|
|
||
|
if ((is_numeric($entry)) && (!is_string($entry))) {
|
||
|
$entry = (int) floor($entry);
|
||
|
|
||
|
$mArgs = [];
|
||
|
foreach ($aArgs as $arg) {
|
||
|
// Is it a numeric value?
|
||
|
if ((is_numeric($arg)) && (!is_string($arg))) {
|
||
|
$mArgs[] = $arg;
|
||
|
}
|
||
|
}
|
||
|
$count = self::COUNT($mArgs);
|
||
|
--$entry;
|
||
|
if (($entry < 0) || ($entry >= $count) || ($count == 0)) {
|
||
|
return Functions::NAN();
|
||
|
}
|
||
|
sort($mArgs);
|
||
|
|
||
|
return $mArgs[$entry];
|
||
|
}
|
||
|
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* STANDARDIZE.
|
||
|
*
|
||
|
* Returns a normalized value from a distribution characterized by mean and standard_dev.
|
||
|
*
|
||
|
* @param float $value Value to normalize
|
||
|
* @param float $mean Mean Value
|
||
|
* @param float $stdDev Standard Deviation
|
||
|
*
|
||
|
* @return float|string Standardized value, or a string containing an error
|
||
|
*/
|
||
|
public static function STANDARDIZE($value, $mean, $stdDev)
|
||
|
{
|
||
|
$value = Functions::flattenSingleValue($value);
|
||
|
$mean = Functions::flattenSingleValue($mean);
|
||
|
$stdDev = Functions::flattenSingleValue($stdDev);
|
||
|
|
||
|
if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) {
|
||
|
if ($stdDev <= 0) {
|
||
|
return Functions::NAN();
|
||
|
}
|
||
|
|
||
|
return ($value - $mean) / $stdDev;
|
||
|
}
|
||
|
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* STDEV.
|
||
|
*
|
||
|
* Estimates standard deviation based on a sample. The standard deviation is a measure of how
|
||
|
* widely values are dispersed from the average value (the mean).
|
||
|
*
|
||
|
* Excel Function:
|
||
|
* STDEV(value1[,value2[, ...]])
|
||
|
*
|
||
|
* @param mixed ...$args Data values
|
||
|
*
|
||
|
* @return float|string The result, or a string containing an error
|
||
|
*/
|
||
|
public static function STDEV(...$args)
|
||
|
{
|
||
|
$aArgs = Functions::flattenArrayIndexed($args);
|
||
|
|
||
|
// Return value
|
||
|
$returnValue = null;
|
||
|
|
||
|
$aMean = self::AVERAGE($aArgs);
|
||
|
if ($aMean !== null) {
|
||
|
$aCount = -1;
|
||
|
foreach ($aArgs as $k => $arg) {
|
||
|
if (
|
||
|
(is_bool($arg)) &&
|
||
|
((!Functions::isCellValue($k)) || (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_OPENOFFICE))
|
||
|
) {
|
||
|
$arg = (int) $arg;
|
||
|
}
|
||
|
// Is it a numeric value?
|
||
|
if ((is_numeric($arg)) && (!is_string($arg))) {
|
||
|
if ($returnValue === null) {
|
||
|
$returnValue = ($arg - $aMean) ** 2;
|
||
|
} else {
|
||
|
$returnValue += ($arg - $aMean) ** 2;
|
||
|
}
|
||
|
++$aCount;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Return
|
||
|
if (($aCount > 0) && ($returnValue >= 0)) {
|
||
|
return sqrt($returnValue / $aCount);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return Functions::DIV0();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* STDEVA.
|
||
|
*
|
||
|
* Estimates standard deviation based on a sample, including numbers, text, and logical values
|
||
|
*
|
||
|
* Excel Function:
|
||
|
* STDEVA(value1[,value2[, ...]])
|
||
|
*
|
||
|
* @param mixed ...$args Data values
|
||
|
*
|
||
|
* @return float|string
|
||
|
*/
|
||
|
public static function STDEVA(...$args)
|
||
|
{
|
||
|
$aArgs = Functions::flattenArrayIndexed($args);
|
||
|
|
||
|
$returnValue = null;
|
||
|
|
||
|
$aMean = self::AVERAGEA($aArgs);
|
||
|
if ($aMean !== null) {
|
||
|
$aCount = -1;
|
||
|
foreach ($aArgs as $k => $arg) {
|
||
|
if (
|
||
|
(is_bool($arg)) &&
|
||
|
(!Functions::isMatrixValue($k))
|
||
|
) {
|
||
|
} else {
|
||
|
// Is it a numeric value?
|
||
|
if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) {
|
||
|
if (is_bool($arg)) {
|
||
|
$arg = (int) $arg;
|
||
|
} elseif (is_string($arg)) {
|
||
|
$arg = 0;
|
||
|
}
|
||
|
if ($returnValue === null) {
|
||
|
$returnValue = ($arg - $aMean) ** 2;
|
||
|
} else {
|
||
|
$returnValue += ($arg - $aMean) ** 2;
|
||
|
}
|
||
|
++$aCount;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (($aCount > 0) && ($returnValue >= 0)) {
|
||
|
return sqrt($returnValue / $aCount);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return Functions::DIV0();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* STDEVP.
|
||
|
*
|
||
|
* Calculates standard deviation based on the entire population
|
||
|
*
|
||
|
* Excel Function:
|
||
|
* STDEVP(value1[,value2[, ...]])
|
||
|
*
|
||
|
* @param mixed ...$args Data values
|
||
|
*
|
||
|
* @return float|string
|
||
|
*/
|
||
|
public static function STDEVP(...$args)
|
||
|
{
|
||
|
$aArgs = Functions::flattenArrayIndexed($args);
|
||
|
|
||
|
$returnValue = null;
|
||
|
|
||
|
$aMean = self::AVERAGE($aArgs);
|
||
|
if ($aMean !== null) {
|
||
|
$aCount = 0;
|
||
|
foreach ($aArgs as $k => $arg) {
|
||
|
if (
|
||
|
(is_bool($arg)) &&
|
||
|
((!Functions::isCellValue($k)) || (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_OPENOFFICE))
|
||
|
) {
|
||
|
$arg = (int) $arg;
|
||
|
}
|
||
|
// Is it a numeric value?
|
||
|
if ((is_numeric($arg)) && (!is_string($arg))) {
|
||
|
if ($returnValue === null) {
|
||
|
$returnValue = ($arg - $aMean) ** 2;
|
||
|
} else {
|
||
|
$returnValue += ($arg - $aMean) ** 2;
|
||
|
}
|
||
|
++$aCount;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (($aCount > 0) && ($returnValue >= 0)) {
|
||
|
return sqrt($returnValue / $aCount);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return Functions::DIV0();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* STDEVPA.
|
||
|
*
|
||
|
* Calculates standard deviation based on the entire population, including numbers, text, and logical values
|
||
|
*
|
||
|
* Excel Function:
|
||
|
* STDEVPA(value1[,value2[, ...]])
|
||
|
*
|
||
|
* @param mixed ...$args Data values
|
||
|
*
|
||
|
* @return float|string
|
||
|
*/
|
||
|
public static function STDEVPA(...$args)
|
||
|
{
|
||
|
$aArgs = Functions::flattenArrayIndexed($args);
|
||
|
|
||
|
$returnValue = null;
|
||
|
|
||
|
$aMean = self::AVERAGEA($aArgs);
|
||
|
if ($aMean !== null) {
|
||
|
$aCount = 0;
|
||
|
foreach ($aArgs as $k => $arg) {
|
||
|
if (
|
||
|
(is_bool($arg)) &&
|
||
|
(!Functions::isMatrixValue($k))
|
||
|
) {
|
||
|
} else {
|
||
|
// Is it a numeric value?
|
||
|
if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) {
|
||
|
if (is_bool($arg)) {
|
||
|
$arg = (int) $arg;
|
||
|
} elseif (is_string($arg)) {
|
||
|
$arg = 0;
|
||
|
}
|
||
|
if ($returnValue === null) {
|
||
|
$returnValue = ($arg - $aMean) ** 2;
|
||
|
} else {
|
||
|
$returnValue += ($arg - $aMean) ** 2;
|
||
|
}
|
||
|
++$aCount;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (($aCount > 0) && ($returnValue >= 0)) {
|
||
|
return sqrt($returnValue / $aCount);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return Functions::DIV0();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* STEYX.
|
||
|
*
|
||
|
* Returns the standard error of the predicted y-value for each x in the regression.
|
||
|
*
|
||
|
* @param mixed[] $yValues Data Series Y
|
||
|
* @param mixed[] $xValues Data Series X
|
||
|
*
|
||
|
* @return float|string
|
||
|
*/
|
||
|
public static function STEYX($yValues, $xValues)
|
||
|
{
|
||
|
if (!self::checkTrendArrays($yValues, $xValues)) {
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
$yValueCount = count($yValues);
|
||
|
$xValueCount = count($xValues);
|
||
|
|
||
|
if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
|
||
|
return Functions::NA();
|
||
|
} elseif ($yValueCount == 1) {
|
||
|
return Functions::DIV0();
|
||
|
}
|
||
|
|
||
|
$bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);
|
||
|
|
||
|
return $bestFitLinear->getStdevOfResiduals();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* TDIST.
|
||
|
*
|
||
|
* Returns the probability of Student's T distribution.
|
||
|
*
|
||
|
* @param float $value Value for the function
|
||
|
* @param float $degrees degrees of freedom
|
||
|
* @param float $tails number of tails (1 or 2)
|
||
|
*
|
||
|
* @return float|string The result, or a string containing an error
|
||
|
*/
|
||
|
public static function TDIST($value, $degrees, $tails)
|
||
|
{
|
||
|
$value = Functions::flattenSingleValue($value);
|
||
|
$degrees = floor(Functions::flattenSingleValue($degrees));
|
||
|
$tails = floor(Functions::flattenSingleValue($tails));
|
||
|
|
||
|
if ((is_numeric($value)) && (is_numeric($degrees)) && (is_numeric($tails))) {
|
||
|
if (($value < 0) || ($degrees < 1) || ($tails < 1) || ($tails > 2)) {
|
||
|
return Functions::NAN();
|
||
|
}
|
||
|
// tdist, which finds the probability that corresponds to a given value
|
||
|
// of t with k degrees of freedom. This algorithm is translated from a
|
||
|
// pascal function on p81 of "Statistical Computing in Pascal" by D
|
||
|
// Cooke, A H Craven & G M Clark (1985: Edward Arnold (Pubs.) Ltd:
|
||
|
// London). The above Pascal algorithm is itself a translation of the
|
||
|
// fortran algoritm "AS 3" by B E Cooper of the Atlas Computer
|
||
|
// Laboratory as reported in (among other places) "Applied Statistics
|
||
|
// Algorithms", editied by P Griffiths and I D Hill (1985; Ellis
|
||
|
// Horwood Ltd.; W. Sussex, England).
|
||
|
$tterm = $degrees;
|
||
|
$ttheta = atan2($value, sqrt($tterm));
|
||
|
$tc = cos($ttheta);
|
||
|
$ts = sin($ttheta);
|
||
|
|
||
|
if (($degrees % 2) == 1) {
|
||
|
$ti = 3;
|
||
|
$tterm = $tc;
|
||
|
} else {
|
||
|
$ti = 2;
|
||
|
$tterm = 1;
|
||
|
}
|
||
|
|
||
|
$tsum = $tterm;
|
||
|
while ($ti < $degrees) {
|
||
|
$tterm *= $tc * $tc * ($ti - 1) / $ti;
|
||
|
$tsum += $tterm;
|
||
|
$ti += 2;
|
||
|
}
|
||
|
$tsum *= $ts;
|
||
|
if (($degrees % 2) == 1) {
|
||
|
$tsum = Functions::M_2DIVPI * ($tsum + $ttheta);
|
||
|
}
|
||
|
$tValue = 0.5 * (1 + $tsum);
|
||
|
if ($tails == 1) {
|
||
|
return 1 - abs($tValue);
|
||
|
}
|
||
|
|
||
|
return 1 - abs((1 - $tValue) - $tValue);
|
||
|
}
|
||
|
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* TINV.
|
||
|
*
|
||
|
* Returns the one-tailed probability of the chi-squared distribution.
|
||
|
*
|
||
|
* @param float $probability Probability for the function
|
||
|
* @param float $degrees degrees of freedom
|
||
|
*
|
||
|
* @return float|string The result, or a string containing an error
|
||
|
*/
|
||
|
public static function TINV($probability, $degrees)
|
||
|
{
|
||
|
$probability = Functions::flattenSingleValue($probability);
|
||
|
$degrees = floor(Functions::flattenSingleValue($degrees));
|
||
|
|
||
|
if ((is_numeric($probability)) && (is_numeric($degrees))) {
|
||
|
$xLo = 100;
|
||
|
$xHi = 0;
|
||
|
|
||
|
$x = $xNew = 1;
|
||
|
$dx = 1;
|
||
|
$i = 0;
|
||
|
|
||
|
while ((abs($dx) > Functions::PRECISION) && ($i++ < self::MAX_ITERATIONS)) {
|
||
|
// Apply Newton-Raphson step
|
||
|
$result = self::TDIST($x, $degrees, 2);
|
||
|
$error = $result - $probability;
|
||
|
if ($error == 0.0) {
|
||
|
$dx = 0;
|
||
|
} elseif ($error < 0.0) {
|
||
|
$xLo = $x;
|
||
|
} else {
|
||
|
$xHi = $x;
|
||
|
}
|
||
|
// Avoid division by zero
|
||
|
if ($result != 0.0) {
|
||
|
$dx = $error / $result;
|
||
|
$xNew = $x - $dx;
|
||
|
}
|
||
|
// If the NR fails to converge (which for example may be the
|
||
|
// case if the initial guess is too rough) we apply a bisection
|
||
|
// step to determine a more narrow interval around the root.
|
||
|
if (($xNew < $xLo) || ($xNew > $xHi) || ($result == 0.0)) {
|
||
|
$xNew = ($xLo + $xHi) / 2;
|
||
|
$dx = $xNew - $x;
|
||
|
}
|
||
|
$x = $xNew;
|
||
|
}
|
||
|
if ($i == self::MAX_ITERATIONS) {
|
||
|
return Functions::NA();
|
||
|
}
|
||
|
|
||
|
return round($x, 12);
|
||
|
}
|
||
|
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* TREND.
|
||
|
*
|
||
|
* Returns values along a linear Trend
|
||
|
*
|
||
|
* @param mixed[] $yValues Data Series Y
|
||
|
* @param mixed[] $xValues Data Series X
|
||
|
* @param mixed[] $newValues Values of X for which we want to find Y
|
||
|
* @param bool $const a logical value specifying whether to force the intersect to equal 0
|
||
|
*
|
||
|
* @return array of float
|
||
|
*/
|
||
|
public static function TREND($yValues, $xValues = [], $newValues = [], $const = true)
|
||
|
{
|
||
|
$yValues = Functions::flattenArray($yValues);
|
||
|
$xValues = Functions::flattenArray($xValues);
|
||
|
$newValues = Functions::flattenArray($newValues);
|
||
|
$const = ($const === null) ? true : (bool) Functions::flattenSingleValue($const);
|
||
|
|
||
|
$bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues, $const);
|
||
|
if (empty($newValues)) {
|
||
|
$newValues = $bestFitLinear->getXValues();
|
||
|
}
|
||
|
|
||
|
$returnArray = [];
|
||
|
foreach ($newValues as $xValue) {
|
||
|
$returnArray[0][] = $bestFitLinear->getValueOfYForX($xValue);
|
||
|
}
|
||
|
|
||
|
return $returnArray;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* TRIMMEAN.
|
||
|
*
|
||
|
* Returns the mean of the interior of a data set. TRIMMEAN calculates the mean
|
||
|
* taken by excluding a percentage of data points from the top and bottom tails
|
||
|
* of a data set.
|
||
|
*
|
||
|
* Excel Function:
|
||
|
* TRIMEAN(value1[,value2[, ...]], $discard)
|
||
|
*
|
||
|
* @param mixed $args Data values
|
||
|
*
|
||
|
* @return float|string
|
||
|
*/
|
||
|
public static function TRIMMEAN(...$args)
|
||
|
{
|
||
|
$aArgs = Functions::flattenArray($args);
|
||
|
|
||
|
// Calculate
|
||
|
$percent = array_pop($aArgs);
|
||
|
|
||
|
if ((is_numeric($percent)) && (!is_string($percent))) {
|
||
|
if (($percent < 0) || ($percent > 1)) {
|
||
|
return Functions::NAN();
|
||
|
}
|
||
|
$mArgs = [];
|
||
|
foreach ($aArgs as $arg) {
|
||
|
// Is it a numeric value?
|
||
|
if ((is_numeric($arg)) && (!is_string($arg))) {
|
||
|
$mArgs[] = $arg;
|
||
|
}
|
||
|
}
|
||
|
$discard = floor(self::COUNT($mArgs) * $percent / 2);
|
||
|
sort($mArgs);
|
||
|
for ($i = 0; $i < $discard; ++$i) {
|
||
|
array_pop($mArgs);
|
||
|
array_shift($mArgs);
|
||
|
}
|
||
|
|
||
|
return self::AVERAGE($mArgs);
|
||
|
}
|
||
|
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* VARFunc.
|
||
|
*
|
||
|
* Estimates variance based on a sample.
|
||
|
*
|
||
|
* Excel Function:
|
||
|
* VAR(value1[,value2[, ...]])
|
||
|
*
|
||
|
* @param mixed ...$args Data values
|
||
|
*
|
||
|
* @return float|string (string if result is an error)
|
||
|
*/
|
||
|
public static function VARFunc(...$args)
|
||
|
{
|
||
|
$returnValue = Functions::DIV0();
|
||
|
|
||
|
$summerA = $summerB = 0;
|
||
|
|
||
|
// Loop through arguments
|
||
|
$aArgs = Functions::flattenArray($args);
|
||
|
$aCount = 0;
|
||
|
foreach ($aArgs as $arg) {
|
||
|
if (is_bool($arg)) {
|
||
|
$arg = (int) $arg;
|
||
|
}
|
||
|
// Is it a numeric value?
|
||
|
if ((is_numeric($arg)) && (!is_string($arg))) {
|
||
|
$summerA += ($arg * $arg);
|
||
|
$summerB += $arg;
|
||
|
++$aCount;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if ($aCount > 1) {
|
||
|
$summerA *= $aCount;
|
||
|
$summerB *= $summerB;
|
||
|
$returnValue = ($summerA - $summerB) / ($aCount * ($aCount - 1));
|
||
|
}
|
||
|
|
||
|
return $returnValue;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* VARA.
|
||
|
*
|
||
|
* Estimates variance based on a sample, including numbers, text, and logical values
|
||
|
*
|
||
|
* Excel Function:
|
||
|
* VARA(value1[,value2[, ...]])
|
||
|
*
|
||
|
* @param mixed ...$args Data values
|
||
|
*
|
||
|
* @return float|string (string if result is an error)
|
||
|
*/
|
||
|
public static function VARA(...$args)
|
||
|
{
|
||
|
$returnValue = Functions::DIV0();
|
||
|
|
||
|
$summerA = $summerB = 0;
|
||
|
|
||
|
// Loop through arguments
|
||
|
$aArgs = Functions::flattenArrayIndexed($args);
|
||
|
$aCount = 0;
|
||
|
foreach ($aArgs as $k => $arg) {
|
||
|
if (
|
||
|
(is_string($arg)) &&
|
||
|
(Functions::isValue($k))
|
||
|
) {
|
||
|
return Functions::VALUE();
|
||
|
} elseif (
|
||
|
(is_string($arg)) &&
|
||
|
(!Functions::isMatrixValue($k))
|
||
|
) {
|
||
|
} else {
|
||
|
// Is it a numeric value?
|
||
|
if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) {
|
||
|
if (is_bool($arg)) {
|
||
|
$arg = (int) $arg;
|
||
|
} elseif (is_string($arg)) {
|
||
|
$arg = 0;
|
||
|
}
|
||
|
$summerA += ($arg * $arg);
|
||
|
$summerB += $arg;
|
||
|
++$aCount;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if ($aCount > 1) {
|
||
|
$summerA *= $aCount;
|
||
|
$summerB *= $summerB;
|
||
|
$returnValue = ($summerA - $summerB) / ($aCount * ($aCount - 1));
|
||
|
}
|
||
|
|
||
|
return $returnValue;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* VARP.
|
||
|
*
|
||
|
* Calculates variance based on the entire population
|
||
|
*
|
||
|
* Excel Function:
|
||
|
* VARP(value1[,value2[, ...]])
|
||
|
*
|
||
|
* @param mixed ...$args Data values
|
||
|
*
|
||
|
* @return float|string (string if result is an error)
|
||
|
*/
|
||
|
public static function VARP(...$args)
|
||
|
{
|
||
|
// Return value
|
||
|
$returnValue = Functions::DIV0();
|
||
|
|
||
|
$summerA = $summerB = 0;
|
||
|
|
||
|
// Loop through arguments
|
||
|
$aArgs = Functions::flattenArray($args);
|
||
|
$aCount = 0;
|
||
|
foreach ($aArgs as $arg) {
|
||
|
if (is_bool($arg)) {
|
||
|
$arg = (int) $arg;
|
||
|
}
|
||
|
// Is it a numeric value?
|
||
|
if ((is_numeric($arg)) && (!is_string($arg))) {
|
||
|
$summerA += ($arg * $arg);
|
||
|
$summerB += $arg;
|
||
|
++$aCount;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if ($aCount > 0) {
|
||
|
$summerA *= $aCount;
|
||
|
$summerB *= $summerB;
|
||
|
$returnValue = ($summerA - $summerB) / ($aCount * $aCount);
|
||
|
}
|
||
|
|
||
|
return $returnValue;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* VARPA.
|
||
|
*
|
||
|
* Calculates variance based on the entire population, including numbers, text, and logical values
|
||
|
*
|
||
|
* Excel Function:
|
||
|
* VARPA(value1[,value2[, ...]])
|
||
|
*
|
||
|
* @param mixed ...$args Data values
|
||
|
*
|
||
|
* @return float|string (string if result is an error)
|
||
|
*/
|
||
|
public static function VARPA(...$args)
|
||
|
{
|
||
|
$returnValue = Functions::DIV0();
|
||
|
|
||
|
$summerA = $summerB = 0;
|
||
|
|
||
|
// Loop through arguments
|
||
|
$aArgs = Functions::flattenArrayIndexed($args);
|
||
|
$aCount = 0;
|
||
|
foreach ($aArgs as $k => $arg) {
|
||
|
if (
|
||
|
(is_string($arg)) &&
|
||
|
(Functions::isValue($k))
|
||
|
) {
|
||
|
return Functions::VALUE();
|
||
|
} elseif (
|
||
|
(is_string($arg)) &&
|
||
|
(!Functions::isMatrixValue($k))
|
||
|
) {
|
||
|
} else {
|
||
|
// Is it a numeric value?
|
||
|
if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) {
|
||
|
if (is_bool($arg)) {
|
||
|
$arg = (int) $arg;
|
||
|
} elseif (is_string($arg)) {
|
||
|
$arg = 0;
|
||
|
}
|
||
|
$summerA += ($arg * $arg);
|
||
|
$summerB += $arg;
|
||
|
++$aCount;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if ($aCount > 0) {
|
||
|
$summerA *= $aCount;
|
||
|
$summerB *= $summerB;
|
||
|
$returnValue = ($summerA - $summerB) / ($aCount * $aCount);
|
||
|
}
|
||
|
|
||
|
return $returnValue;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* WEIBULL.
|
||
|
*
|
||
|
* Returns the Weibull distribution. Use this distribution in reliability
|
||
|
* analysis, such as calculating a device's mean time to failure.
|
||
|
*
|
||
|
* @param float $value
|
||
|
* @param float $alpha Alpha Parameter
|
||
|
* @param float $beta Beta Parameter
|
||
|
* @param bool $cumulative
|
||
|
*
|
||
|
* @return float|string (string if result is an error)
|
||
|
*/
|
||
|
public static function WEIBULL($value, $alpha, $beta, $cumulative)
|
||
|
{
|
||
|
$value = Functions::flattenSingleValue($value);
|
||
|
$alpha = Functions::flattenSingleValue($alpha);
|
||
|
$beta = Functions::flattenSingleValue($beta);
|
||
|
|
||
|
if ((is_numeric($value)) && (is_numeric($alpha)) && (is_numeric($beta))) {
|
||
|
if (($value < 0) || ($alpha <= 0) || ($beta <= 0)) {
|
||
|
return Functions::NAN();
|
||
|
}
|
||
|
if ((is_numeric($cumulative)) || (is_bool($cumulative))) {
|
||
|
if ($cumulative) {
|
||
|
return 1 - exp(0 - ($value / $beta) ** $alpha);
|
||
|
}
|
||
|
|
||
|
return ($alpha / $beta ** $alpha) * $value ** ($alpha - 1) * exp(0 - ($value / $beta) ** $alpha);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return Functions::VALUE();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ZTEST.
|
||
|
*
|
||
|
* Returns the Weibull distribution. Use this distribution in reliability
|
||
|
* analysis, such as calculating a device's mean time to failure.
|
||
|
*
|
||
|
* @param float $dataSet
|
||
|
* @param float $m0 Alpha Parameter
|
||
|
* @param float $sigma Beta Parameter
|
||
|
*
|
||
|
* @return float|string (string if result is an error)
|
||
|
*/
|
||
|
public static function ZTEST($dataSet, $m0, $sigma = null)
|
||
|
{
|
||
|
$dataSet = Functions::flattenArrayIndexed($dataSet);
|
||
|
$m0 = Functions::flattenSingleValue($m0);
|
||
|
$sigma = Functions::flattenSingleValue($sigma);
|
||
|
|
||
|
if ($sigma === null) {
|
||
|
$sigma = self::STDEV($dataSet);
|
||
|
}
|
||
|
$n = count($dataSet);
|
||
|
|
||
|
return 1 - self::NORMSDIST((self::AVERAGE($dataSet) - $m0) / ($sigma / sqrt($n)));
|
||
|
}
|
||
|
}
|